|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [ |
| 10 | + { |
| 11 | + "name": "stderr", |
| 12 | + "output_type": "stream", |
| 13 | + "text": [ |
| 14 | + "Using Theano backend.\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "from keras.models import Sequential\n", |
| 20 | + "from keras import layers as l\n", |
| 21 | + "from keras.applications.vgg16 import VGG16\n", |
| 22 | + "from keras_sequential_ascii import sequential_model_to_ascii_printout" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 3, |
| 28 | + "metadata": { |
| 29 | + "collapsed": false |
| 30 | + }, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "# this model makes no sense - just a visualization of this library\n", |
| 34 | + "model = Sequential()\n", |
| 35 | + "model.add(l.BatchNormalization(input_shape=(3, 32, 32)))\n", |
| 36 | + "model.add(l.Convolution2D(16, 3, 3, activation='relu'))\n", |
| 37 | + "model.add(l.Convolution2D(16, 3, 3, activation='relu'))\n", |
| 38 | + "model.add(l.MaxPooling2D((2, 2)))\n", |
| 39 | + "model.add(l.Convolution2D(16, 1, 1, activation='tanh'))\n", |
| 40 | + "model.add(l.Flatten())\n", |
| 41 | + "model.add(l.Dense(16))\n", |
| 42 | + "model.add(l.Dropout(0.5))\n", |
| 43 | + "model.add(l.Dense(3, activation='softmax'))\n", |
| 44 | + "\n" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 4, |
| 50 | + "metadata": { |
| 51 | + "collapsed": false |
| 52 | + }, |
| 53 | + "outputs": [ |
| 54 | + { |
| 55 | + "name": "stdout", |
| 56 | + "output_type": "stream", |
| 57 | + "text": [ |
| 58 | + " OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)\n", |
| 59 | + "\n", |
| 60 | + " Input ##### 3 32 32\n", |
| 61 | + " BatchNormalization μ|σ ------------------- 64 0.1%\n", |
| 62 | + " ##### 3 32 32\n", |
| 63 | + " Convolution2D \\|/ ------------------- 448 0.8%\n", |
| 64 | + " relu ##### 16 30 30\n", |
| 65 | + " Convolution2D \\|/ ------------------- 2320 4.4%\n", |
| 66 | + " relu ##### 16 28 28\n", |
| 67 | + " MaxPooling2D YYYYY ------------------- 0 0.0%\n", |
| 68 | + " ##### 16 14 14\n", |
| 69 | + " Convolution2D \\|/ ------------------- 272 0.5%\n", |
| 70 | + " tanh ##### 16 14 14\n", |
| 71 | + " Flatten ||||| ------------------- 0 0.0%\n", |
| 72 | + " ##### 3136\n", |
| 73 | + " Dense XXXXX ------------------- 50192 94.1%\n", |
| 74 | + " ##### 16\n", |
| 75 | + " Dropout | || ------------------- 0 0.0%\n", |
| 76 | + " ##### 16\n", |
| 77 | + " Dense XXXXX ------------------- 34 0.1%\n", |
| 78 | + " ##### 2\n" |
| 79 | + ] |
| 80 | + } |
| 81 | + ], |
| 82 | + "source": [] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 5, |
| 87 | + "metadata": { |
| 88 | + "collapsed": false |
| 89 | + }, |
| 90 | + "outputs": [ |
| 91 | + { |
| 92 | + "name": "stdout", |
| 93 | + "output_type": "stream", |
| 94 | + "text": [ |
| 95 | + " OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)\n", |
| 96 | + "\n", |
| 97 | + " Input ##### 3 224 224\n", |
| 98 | + " InputLayer ????? ------------------- 0 0.0%\n", |
| 99 | + " ##### 3 224 224\n", |
| 100 | + " Convolution2D \\|/ ------------------- 1792 0.0%\n", |
| 101 | + " relu ##### 64 224 224\n", |
| 102 | + " Convolution2D \\|/ ------------------- 36928 0.0%\n", |
| 103 | + " relu ##### 64 224 224\n", |
| 104 | + " MaxPooling2D YYYYY ------------------- 0 0.0%\n", |
| 105 | + " ##### 64 112 112\n", |
| 106 | + " Convolution2D \\|/ ------------------- 73856 0.1%\n", |
| 107 | + " relu ##### 128 112 112\n", |
| 108 | + " Convolution2D \\|/ ------------------- 147584 0.1%\n", |
| 109 | + " relu ##### 128 112 112\n", |
| 110 | + " MaxPooling2D YYYYY ------------------- 0 0.0%\n", |
| 111 | + " ##### 128 56 56\n", |
| 112 | + " Convolution2D \\|/ ------------------- 295168 0.2%\n", |
| 113 | + " relu ##### 256 56 56\n", |
| 114 | + " Convolution2D \\|/ ------------------- 590080 0.4%\n", |
| 115 | + " relu ##### 256 56 56\n", |
| 116 | + " Convolution2D \\|/ ------------------- 590080 0.4%\n", |
| 117 | + " relu ##### 256 56 56\n", |
| 118 | + " MaxPooling2D YYYYY ------------------- 0 0.0%\n", |
| 119 | + " ##### 256 28 28\n", |
| 120 | + " Convolution2D \\|/ ------------------- 1180160 0.9%\n", |
| 121 | + " relu ##### 512 28 28\n", |
| 122 | + " Convolution2D \\|/ ------------------- 2359808 1.7%\n", |
| 123 | + " relu ##### 512 28 28\n", |
| 124 | + " Convolution2D \\|/ ------------------- 2359808 1.7%\n", |
| 125 | + " relu ##### 512 28 28\n", |
| 126 | + " MaxPooling2D YYYYY ------------------- 0 0.0%\n", |
| 127 | + " ##### 512 14 14\n", |
| 128 | + " Convolution2D \\|/ ------------------- 2359808 1.7%\n", |
| 129 | + " relu ##### 512 14 14\n", |
| 130 | + " Convolution2D \\|/ ------------------- 2359808 1.7%\n", |
| 131 | + " relu ##### 512 14 14\n", |
| 132 | + " Convolution2D \\|/ ------------------- 2359808 1.7%\n", |
| 133 | + " relu ##### 512 14 14\n", |
| 134 | + " MaxPooling2D YYYYY ------------------- 0 0.0%\n", |
| 135 | + " ##### 512 7 7\n", |
| 136 | + " Flatten ||||| ------------------- 0 0.0%\n", |
| 137 | + " ##### 25088\n", |
| 138 | + " Dense XXXXX ------------------- 102764544 74.3%\n", |
| 139 | + " relu ##### 4096\n", |
| 140 | + " Dense XXXXX ------------------- 16781312 12.1%\n", |
| 141 | + " relu ##### 4096\n", |
| 142 | + " Dense XXXXX ------------------- 4097000 3.0%\n", |
| 143 | + " softmax ##### 1000\n" |
| 144 | + ] |
| 145 | + } |
| 146 | + ], |
| 147 | + "source": [ |
| 148 | + "vgg16 = VGG16(weights=None)\n", |
| 149 | + "sequential_model_to_ascii_printout(vgg16)" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": 6, |
| 155 | + "metadata": { |
| 156 | + "collapsed": false |
| 157 | + }, |
| 158 | + "outputs": [ |
| 159 | + { |
| 160 | + "ename": "NameError", |
| 161 | + "evalue": "name 'z' is not defined", |
| 162 | + "output_type": "error", |
| 163 | + "traceback": [ |
| 164 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 165 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 166 | + "\u001b[0;32m<ipython-input-6-d46262532051>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 167 | + "\u001b[0;31mNameError\u001b[0m: name 'z' is not defined" |
| 168 | + ] |
| 169 | + } |
| 170 | + ], |
| 171 | + "source": [ |
| 172 | + "len(z)" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": null, |
| 178 | + "metadata": { |
| 179 | + "collapsed": true |
| 180 | + }, |
| 181 | + "outputs": [], |
| 182 | + "source": [] |
| 183 | + } |
| 184 | + ], |
| 185 | + "metadata": { |
| 186 | + "anaconda-cloud": {}, |
| 187 | + "kernelspec": { |
| 188 | + "display_name": "Python [default]", |
| 189 | + "language": "python", |
| 190 | + "name": "python3" |
| 191 | + }, |
| 192 | + "language_info": { |
| 193 | + "codemirror_mode": { |
| 194 | + "name": "ipython", |
| 195 | + "version": 3 |
| 196 | + }, |
| 197 | + "file_extension": ".py", |
| 198 | + "mimetype": "text/x-python", |
| 199 | + "name": "python", |
| 200 | + "nbconvert_exporter": "python", |
| 201 | + "pygments_lexer": "ipython3", |
| 202 | + "version": "3.5.2" |
| 203 | + } |
| 204 | + }, |
| 205 | + "nbformat": 4, |
| 206 | + "nbformat_minor": 1 |
| 207 | +} |
0 commit comments