Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

snrazavi/Machine-Learning-in-Python-Workshop

Repository files navigation

Machine-Learning-in-Python-Workshop

My workshop on machine learning using python language to implement different algorithms (University of Tabriz, Iran, 2017).

Contents

Part 1: Using existing packages for machine learning (Week 1 to 5)

  • Week 01 and 02: Introduction to Numpy and Matplotlib packages
  • Week 03 and 04: Using Scikit Learn for Supervised Learning
  • Week 05: Using Scikit Learn for Unsupervised Learning

Part 2: Implementing our machine Learning algorithms and models (Week 5 to 10)

  • Week 06: Linear classification
  • Week 07: Implementing Loss functions (Softmax loss and SVM loss)
  • Week 08: Implementing gradient descent, Backpropagation and Artifitial Neural Networks (MLP)
  • Week 09: Advanced topics including dropout, batch normalization, weight initialization and other optimization methods(Adam, RMSProp)
  • Week 10: Inroduction to Deep Learning and implementing a Convolutional Neural Network (CNN) for image classification.

Prerequisites:

  • A basic knowledge of Python programming language.
  • A good understaning of Machine Learning.
  • Linear Algebra

Videos in YouTube (in Persian):

My website Address:

  • containing anything you need to learn and of course to use machine learning in real world applications:
  • http://wwww.snrazavi.ir/

The workshop page on my website:

Note: The materials of this workshop are inspired from awesome lectures presented by Andrej Karpathy at Stanford, 2016.

References:

AltStyle によって変換されたページ (->オリジナル) /