Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A Roadmap for Quickstart: Curated resources for Vital Signs & HCI. Maintained by phish-tech.

License

Notifications You must be signed in to change notification settings

phish-tech/awesome-mmwave-sensing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

17 Commits

Repository files navigation

awesome-mmwave-sensing

A Roadmap for Quickstart: Curated resources for Vital Signs & HCI. Maintained by phish-tech.

awesome-mmwave-sensing

Awesome License: MIT PRs Welcome

A curated, research-grade index of millimeter-wave (mmWave) radar sensing for vital signs (respiration/heartbeat), HCI & gesture, and indoor tracking/imaging.
Built for engineers and researchers who want credible papers first, plus datasets, tools, and hardware pointers.

Language: English | ็ฎ€ไฝ“ไธญๆ–‡


Table of Contents


๐Ÿ”ฅ Featured / Recommended

If you only bookmark a few things:

  • Start from Vital Signs fundamentals: mmWave FMCW phase-based extraction + multi-person separation. - For HCI: Soli (CHI/SIGGRAPH lineage) + IMWUT arm gesture systems.
  • For Tracking/Imaging: milliMap (MobiSys) + HuPR (WACV) + IMWUT multi-person tracking.

Broader radar perception lists (non-mmWave-specific but useful for cross-referencing):

โ†‘ Top


๐Ÿ“š Academic Paper Index

Vital Signs

ID Year Title Venue Links
VS-01 2016 Monitoring Vital Signs Using Millimeter Wave ACM MobiHoc DOI: https://doi.org/10.1145/2942358.2942381
VS-02 2017 Vital Sign and Sleep Monitoring Using Millimeter Wave ACM (IMWUT/UbiComp lineage) DOI: https://doi.org/10.1145/3051124
VS-03 2019 Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar IEEE Access PDF: https://www.weizmann.ac.il/math/yonina/sites/math.yonina/files/Remote_Monitoring_of_Human_Vital_Signs_Using_mm-Wave_FMCW_Radar.pdf
VS-04 2020 Remote Monitoring of Human Vital Signs Based on 77-GHz mm-Wave FMCW Radar Sensors DOI: https://doi.org/10.3390/s20102999
VS-05 2021 Non-Contact Monitoring of Human Vital Signs Using FMCW Millimeter Wave Radar in the 120 GHz Band Sensors DOI: https://doi.org/10.3390/s21082732
VS-06 2022 High-Precision Vital Signs Monitoring Method Using a FMCW Millimeter-Wave Sensor Sensors DOI: https://doi.org/10.3390/s22197543
VS-07 2022 Your Breath Doesn't Lie: Multi-user Authentication by Sensing Respiration Using mmWave Radar IEEE SECON DOI: https://doi.org/10.1109/SECON55815.2022.9918606
VS-08 2023 Sparsity-Based Multi-Person Non-Contact Vital Signs Monitoring via FMCW Radar IEEE JBHI DOI: https://doi.org/10.1109/JBHI.2023.3255740
VS-09 2023 Pi-ViMo: Physiology-inspired Robust Vital Sign Monitoring using mmWave Radars ACM TIOT DOI: https://doi.org/10.1145/3589347
VS-10 2025 Event-level Identification of Sleep Apnea using FMCW Radar Scientific Reports https://doi.org/10.3390/bioengineering12040399

More (Vital Signs):

โ†‘ Top


HCI / Gesture / Biometrics

ID Year Title Venue Links
HCI-01 2016 Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar ACM TOG DOI: https://doi.org/10.1145/2897824.2925953
HCI-02 2020 Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing (mHomeGes) ACM IMWUT DOI: https://doi.org/10.1145/3432235
HCI-03 2020 MU-ID: Multi-user Identification Through Gaits Using 60 GHz Radios IEEE INFOCOM DOI: https://doi.org/10.1109/INFOCOM41043.2020.9155456
HCI-04 2020 Handwriting Tracking using 60 GHz mmWave Radar IEEE WF-IoT DOI: https://doi.org/10.1109/WF-IoT48130.2020.9221158
HCI-05 2021 Hand Gesture Recognition Using 802.11ad mmWave Sensor in the Mobile Device IEEE WCNC Workshops DOI: https://doi.org/10.1109/WCNCW49093.2021.9419978
HCI-06 2021 mmWrite: Passive Handwriting Tracking Using a Single Millimeter-Wave Radio IEEE IoT-J DOI: https://doi.org/10.1109/JIOT.2021.3066507
HCI-07 2021 DI-Gesture: A Fine-grained Dataset and Benchmark for Doppler Imaging-based Gesture Recognition arXiv https://arxiv.org/abs/2101.05214
HCI-08 2022 mm4Arm: Leveraging Properties of mmWave Signals for 3D Arm Motion Tracking ACM POMACS DOI: https://doi.org/10.1145/3570613
HCI-09 2022 GaitCube: Deep Data Cube Learning for Human Recognition With Millimeter-Wave Radio IEEE IoT-J DOI: https://doi.org/10.1109/JIOT.2021.3083934
HCI-10 2024 mmSign: mmWave-based Few-Shot Online Handwritten Signature Verification ACM TOSN DOI: https://doi.org/10.1145/3605945
HCI-11 2025 mmPencil: Toward Writing-Style-Independent In-Air Handwriting Recognition via mmWave Radar and Large Vision-Language Model ACM IMWUT DOI: https://doi.org/10.1145/3749504

โ†‘ Top


Imaging / Tracking / Mapping

ID Year Title Venue Links
TRK-01 2018 Indoor Localization Using Commercial Off-The-Shelf 60 GHz Access Points IEEE INFOCOM DOI: https://doi.org/10.1145/INFOCOM.2018.8486232
TRK-02 2019 RadHAR: Human Activity Recognition from Point Clouds Generated through a Millimeter-wave Radar ACM mmNets (MobiCom WS) DOI: https://doi.org/10.1145/3349624.3356768
TRK-03 2020 milliMap: Robust Indoor Mapping with Low-cost mmWave Radar ACM MobiSys DOI: https://doi.org/10.1145/3386901.3388945
TRK-04 2022 mTransSee: Enabling Real-time mmWave Sparse Imaging through Non-RF Occluders ACM IMWUT DOI: https://doi.org/10.1145/3517231
TRK-05 2023 HuPR: A Benchmark for Human Pose Estimation Using Millimeter Wave Radar IEEE WACV PDF: https://openaccess.thecvf.com/content/WACV2023/papers/Lee_HuPR_A_Benchmark_for_Human_Pose_Estimation_Using_Millimeter_Wave_WACV_2023_paper.pdf
TRK-06 2023 Environment-aware Multi-person Tracking in Indoor Environments with mmWave Radars ACM IMWUT DOI: https://doi.org/10.1145/3610902
TRK-07 2023 MM-Fi: Multi-Modal Non-Intrusive 4D Human Dataset for Wireless Human Sensing NeurIPS Datasets & Benchmarks / arXiv Project: https://ntu-aiot-lab.github.io/mm-fi
TRK-08 2024 PmTrack: Enabling Personalized mmWave-based Human Tracking in Commodity Smart Home ACM IMWUT DOI: https://doi.org/10.1145/3631433
TRK-09 2024 Waffle: Waterproof mmWave-based Sensing Inside Bathrooms with Running Water ACM IMWUT DOI: https://doi.org/10.1145/3631458
TRK-10 2024 Fast Human Action Recognition via mmWave Radar Point Clouds ACM (conference proceedings) DOI: https://doi.org/10.1145/3627673.3679787
TRK-11 2025 DragonFly: Drone-based 3D Localization of Backscatter Tags Using mmWave Radar ACM MobiCom DOI: https://doi.org/10.1145/3680207.3765269

โ†‘ Top


๐Ÿ›  Open Source Tools

โ†‘ Top


๐Ÿ’พ Datasets

โ†‘ Top


๐Ÿ”Œ Hardware

โ†‘ Top


๐ŸŽ“ Zero to Hero

New to mmWave radar? Follow this learning path to go from concept to implementation:

  1. Theory (The Basics) ๐Ÿ“– Read the classic TI FMCW Radar Basics whitepaper. Understand Range-FFT, Doppler-FFT, and Angle Estimation.
  2. Hands-on (The Quickstart) ๐Ÿ› ๏ธ Run the mmWave-Heartbeat-Toolbox . It handles the complex data parsing and gives you a working vital signs baseline.
  3. Deep Dive (The Academic Pillar) ๐ŸŽ“ Read the foundational paper VS-01 (MobiHoc '16) . It defined the phase-based sensing pipeline used by most researchers today.
  4. Expansion (The Community) ๐Ÿงฉ Try replicating examples from OpenRadar to explore detection and tracking.

โ†‘ Top


๐Ÿ‘ฅ Community & Contributing

Contributions are welcome and appreciated.

How to add a paper/tool/dataset

  1. Keep scope: mmWave radar sensing (vital signs / HCI / tracking & imaging).
  2. Prefer peer-reviewed venues (ACM/IEEE/Elsevier/Nature family) and stable links (DOI/project page).
  3. Follow the indexing format: add a new ID and a one-line citation.

Suggested repo files

  • CONTRIBUTING.md โ€” contribution rules + formatting
  • CODE_OF_CONDUCT.md โ€” community policy
  • CITATION.cff โ€” how to cite this list

โ†‘ Top


๐Ÿงฉ Phish-tech Present

The following items are presented by the author of this project.

  • โญ mmWave Preprocessing Tool for Heartbeat Estimation โ€” https://github.com/phish-tech/mmWave-Heartbeat-Toolbox
    A lightweight, pure Python framework for TI mmWave radar data processing. Features EEMD for robust vital sign extraction. ๐Ÿš€ Recommended for Beginners.

โ†‘ Top

About

A Roadmap for Quickstart: Curated resources for Vital Signs & HCI. Maintained by phish-tech.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle ใซใ‚ˆใฃใฆๅค‰ๆ›ใ•ใ‚ŒใŸใƒšใƒผใ‚ธ (->ใ‚ชใƒชใ‚ธใƒŠใƒซ) /