|
| 1 | +-- https://github.com/minoki/my-atcoder-solutions |
| 2 | +{-# LANGUAGE BangPatterns #-} |
| 3 | +{-# LANGUAGE MultiParamTypeClasses #-} |
| 4 | +{-# LANGUAGE ScopedTypeVariables #-} |
| 5 | +{-# LANGUAGE TypeApplications #-} |
| 6 | +import Control.Monad |
| 7 | +import qualified Data.ByteString.Char8 as BS |
| 8 | +import Data.Char (isSpace) |
| 9 | +import Data.Coerce |
| 10 | +import Data.Int (Int64) |
| 11 | +import Data.List (unfoldr) |
| 12 | +import qualified Data.Vector.Generic as G |
| 13 | +import qualified Data.Vector.Unboxed as U |
| 14 | +import qualified Data.Vector.Unboxed.Mutable as UM |
| 15 | + |
| 16 | +main = do |
| 17 | + n <- readLn @Int -- n <= 10^5 |
| 18 | + (as,bs) <- fmap U.unzip $ U.replicateM n $ do |
| 19 | + [a,b] <- unfoldr (BS.readInt . BS.dropWhile isSpace) <$> BS.getLine |
| 20 | + return (a,b) |
| 21 | + let p, q :: Poly U.Vector Int |
| 22 | + p = Poly $ normalizePoly (0 `U.cons` as) |
| 23 | + q = Poly $ normalizePoly (0 `U.cons` bs) |
| 24 | + !v = coeffAsc (p * q) |
| 25 | + !l = U.length v |
| 26 | + forM_ [1..2*n] $ \k -> do |
| 27 | + print $ if k < l then |
| 28 | + v U.! k |
| 29 | + else |
| 30 | + 0 |
| 31 | + |
| 32 | +-- |
| 33 | +-- Univariate polynomial |
| 34 | +-- |
| 35 | + |
| 36 | +newtype Poly vec a = Poly { coeffAsc :: vec a } deriving Eq |
| 37 | + |
| 38 | +normalizePoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a |
| 39 | +normalizePoly v | G.null v || G.last v /= 0 = v |
| 40 | + | otherwise = normalizePoly (G.init v) |
| 41 | + |
| 42 | +addPoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 43 | +addPoly v w = case compare n m of |
| 44 | + LT -> G.generate m $ \i -> if i < n |
| 45 | + then v G.! i + w G.! i |
| 46 | + else w G.! i |
| 47 | + GT -> G.generate n $ \i -> if i < m |
| 48 | + then v G.! i + w G.! i |
| 49 | + else v G.! i |
| 50 | + EQ -> normalizePoly $ G.zipWith (+) v w |
| 51 | + where n = G.length v |
| 52 | + m = G.length w |
| 53 | + |
| 54 | +subPoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 55 | +subPoly v w = case compare n m of |
| 56 | + LT -> G.generate m $ \i -> if i < n |
| 57 | + then v G.! i - w G.! i |
| 58 | + else negate (w G.! i) |
| 59 | + GT -> G.generate n $ \i -> if i < m |
| 60 | + then v G.! i - w G.! i |
| 61 | + else v G.! i |
| 62 | + EQ -> normalizePoly $ G.zipWith (-) v w |
| 63 | + where n = G.length v |
| 64 | + m = G.length w |
| 65 | + |
| 66 | +naiveMulPoly :: (Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 67 | +naiveMulPoly v w = G.generate (n + m - 1) $ |
| 68 | + \i -> sum [(v G.! (i-j)) * (w G.! j) | j <- [max (i-n+1) 0..min i (m-1)]] |
| 69 | + where n = G.length v |
| 70 | + m = G.length w |
| 71 | + |
| 72 | +doMulP :: (Eq a, Num a, G.Vector vec a) => Int -> vec a -> vec a -> vec a |
| 73 | +doMulP n !v !w | n <= 16 = naiveMulPoly v w |
| 74 | +doMulP n !v !w |
| 75 | + | G.null v = v |
| 76 | + | G.null w = w |
| 77 | + | G.length v < n2 = let (w0, w1) = G.splitAt n2 w |
| 78 | + u0 = doMulP n2 v w0 |
| 79 | + u1 = doMulP n2 v w1 |
| 80 | + in G.generate (G.length v + G.length w - 1) |
| 81 | + $ \i -> case () of |
| 82 | + _ | i < n2 -> u0 `at` i |
| 83 | + | i < n -> (u0 `at` i) + (u1 `at` (i - n2)) |
| 84 | + | i < n + n2 -> (u1 `at` (i - n2)) |
| 85 | + | G.length w < n2 = let (v0, v1) = G.splitAt n2 v |
| 86 | + u0 = doMulP n2 v0 w |
| 87 | + u1 = doMulP n2 v1 w |
| 88 | + in G.generate (G.length v + G.length w - 1) |
| 89 | + $ \i -> case () of |
| 90 | + _ | i < n2 -> u0 `at` i |
| 91 | + | i < n -> (u0 `at` i) + (u1 `at` (i - n2)) |
| 92 | + | i < n + n2 -> (u1 `at` (i - n2)) |
| 93 | + | otherwise = let (v0, v1) = G.splitAt n2 v |
| 94 | + (w0, w1) = G.splitAt n2 w |
| 95 | + v0_1 = v0 `addPoly` v1 |
| 96 | + w0_1 = w0 `addPoly` w1 |
| 97 | + p = doMulP n2 v0_1 w0_1 |
| 98 | + q = doMulP n2 v0 w0 |
| 99 | + r = doMulP n2 v1 w1 |
| 100 | + -- s = (p `subPoly` q) `subPoly` r -- p - q - r |
| 101 | + -- q + s*X^n2 + r*X^n |
| 102 | + in G.generate (G.length v + G.length w - 1) |
| 103 | + $ \i -> case () of |
| 104 | + _ | i < n2 -> q `at` i |
| 105 | + | i < n -> ((q `at` i) + (p `at` (i - n2))) - ((q `at` (i - n2)) + (r `at` (i - n2))) |
| 106 | + | i < n + n2 -> ((r `at` (i - n)) + (p `at` (i - n2))) - ((q `at` (i - n2)) + (r `at` (i - n2))) |
| 107 | + | otherwise -> r `at` (i - n) |
| 108 | + where n2 = n `quot` 2 |
| 109 | + at :: (Num a, G.Vector vec a) => vec a -> Int -> a |
| 110 | + at v i = if i < G.length v then v G.! i else 0 |
| 111 | +{-# INLINE doMulP #-} |
| 112 | + |
| 113 | +mulPoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 114 | +mulPoly !v !w = let k = ceiling ((log (fromIntegral (max n m)) :: Double) / log 2) :: Int |
| 115 | + in doMulP (2^k) v w |
| 116 | + where n = G.length v |
| 117 | + m = G.length w |
| 118 | +{-# INLINE mulPoly #-} |
| 119 | + |
| 120 | +zeroPoly :: (G.Vector vec a) => Poly vec a |
| 121 | +zeroPoly = Poly G.empty |
| 122 | + |
| 123 | +constPoly :: (Eq a, Num a, G.Vector vec a) => a -> Poly vec a |
| 124 | +constPoly 0 = Poly G.empty |
| 125 | +constPoly x = Poly (G.singleton x) |
| 126 | + |
| 127 | +scalePoly :: (Eq a, Num a, G.Vector vec a) => a -> Poly vec a -> Poly vec a |
| 128 | +scalePoly a (Poly xs) |
| 129 | + | a == 0 = zeroPoly |
| 130 | + | otherwise = Poly $ G.map (* a) xs |
| 131 | + |
| 132 | +valueAtPoly :: (Num a, G.Vector vec a) => Poly vec a -> a -> a |
| 133 | +valueAtPoly (Poly xs) t = G.foldr' (\a b -> a + t * b) 0 xs |
| 134 | + |
| 135 | +instance (Eq a, Num a, G.Vector vec a) => Num (Poly vec a) where |
| 136 | + (+) = coerce (addPoly :: vec a -> vec a -> vec a) |
| 137 | + (-) = coerce (subPoly :: vec a -> vec a -> vec a) |
| 138 | + negate (Poly v) = Poly (G.map negate v) |
| 139 | + (*) = coerce (mulPoly :: vec a -> vec a -> vec a) |
| 140 | + fromInteger = constPoly . fromInteger |
| 141 | + abs = undefined; signum = undefined |
| 142 | + |
| 143 | +divModPoly :: (Eq a, Fractional a, G.Vector vec a) => Poly vec a -> Poly vec a -> (Poly vec a, Poly vec a) |
| 144 | +divModPoly f g@(Poly w) |
| 145 | + | G.null w = error "divModPoly: divide by zero" |
| 146 | + | degree f < degree g = (zeroPoly, f) |
| 147 | + | otherwise = loop zeroPoly (scalePoly (recip b) f) |
| 148 | + where |
| 149 | + g' = toMonic g |
| 150 | + b = leadingCoefficient g |
| 151 | + -- invariant: f == q * g + scalePoly b p |
| 152 | + loop q p | degree p < degree g = (q, scalePoly b p) |
| 153 | + | otherwise = let q' = Poly (G.drop (degree' g) (coeffAsc p)) |
| 154 | + in loop (q + q') (p - q' * g') |
| 155 | + |
| 156 | + toMonic :: (Fractional a, G.Vector vec a) => Poly vec a -> Poly vec a |
| 157 | + toMonic f@(Poly xs) |
| 158 | + | G.null xs = zeroPoly |
| 159 | + | otherwise = Poly $ G.map (* recip (leadingCoefficient f)) xs |
| 160 | + |
| 161 | + leadingCoefficient :: (Num a, G.Vector vec a) => Poly vec a -> a |
| 162 | + leadingCoefficient (Poly xs) |
| 163 | + | G.null xs = 0 |
| 164 | + | otherwise = G.last xs |
| 165 | + |
| 166 | + degree :: G.Vector vec a => Poly vec a -> Maybe Int |
| 167 | + degree (Poly xs) = case G.length xs - 1 of |
| 168 | + -1 -> Nothing |
| 169 | + n -> Just n |
| 170 | + |
| 171 | + degree' :: G.Vector vec a => Poly vec a -> Int |
| 172 | + degree' (Poly xs) = case G.length xs of |
| 173 | + 0 -> error "degree': zero polynomial" |
| 174 | + n -> n - 1 |
| 175 | + |
| 176 | +-- 組立除法 |
| 177 | +-- second constPoly (divModByDeg1 f t) = divMod f (Poly (G.fromList [-t, 1])) |
| 178 | +divModByDeg1 :: (Eq a, Num a, G.Vector vec a) => Poly vec a -> a -> (Poly vec a, a) |
| 179 | +divModByDeg1 f t = let w = G.postscanr (\a b -> a + b * t) 0 $ coeffAsc f |
| 180 | + in (Poly (G.tail w), G.head w) |
0 commit comments