|
| 1 | +-- https://github.com/minoki/my-atcoder-solutions |
| 2 | +{-# LANGUAGE BangPatterns #-} |
| 3 | +{-# LANGUAGE DataKinds #-} |
| 4 | +{-# LANGUAGE NoStarIsType #-} |
| 5 | +{-# LANGUAGE ScopedTypeVariables #-} |
| 6 | +{-# LANGUAGE TypeFamilies #-} |
| 7 | +{-# LANGUAGE TypeOperators #-} |
| 8 | +import Control.Monad |
| 9 | +import Control.Monad.ST |
| 10 | +import Data.Bits |
| 11 | +import qualified Data.ByteString.Char8 as BS |
| 12 | +import Data.Char (isSpace) |
| 13 | +import Data.Coerce |
| 14 | +import Data.Int (Int64) |
| 15 | +import Data.List (foldl', tails, unfoldr) |
| 16 | +import qualified Data.Vector.Generic as G |
| 17 | +import qualified Data.Vector.Unboxing as U |
| 18 | +import qualified Data.Vector.Unboxing.Mutable as UM |
| 19 | +import GHC.TypeNats (type (+), KnownNat, Nat, |
| 20 | + type (^), natVal) |
| 21 | + |
| 22 | +type P = U.Vector (IntMod (10^9 + 7)) |
| 23 | +type PM s = UM.MVector s (IntMod (10^9 + 7)) |
| 24 | + |
| 25 | +{- |
| 26 | +sum' :: KnownNat m => [IntMod m] -> IntMod m |
| 27 | +sum' = fromIntegral . foldl' (\x y -> x + unwrapN y) 0 |
| 28 | +{-# INLINE sum' #-} |
| 29 | +-} |
| 30 | + |
| 31 | +-- 多項式は |
| 32 | +-- U.fromList [a,b,c,...,z] = a + b * X + c * X^2 + ... + z * X^(k-1) |
| 33 | +-- により表す。 |
| 34 | + |
| 35 | +-- 多項式を X^k - X^(k-1) - ... - X - 1 で割った余りを返す。 |
| 36 | +reduceM :: Int -> PM s -> ST s (PM s) |
| 37 | +reduceM !k !v = loop (UM.length v) |
| 38 | + where loop !l | l <= k = return (UM.take l v) |
| 39 | + | otherwise = do b <- UM.read v (l - 1) |
| 40 | + forM_ [l - k - 1 .. l - 2] $ \i -> do |
| 41 | + UM.modify v (+ b) i |
| 42 | + loop (l - 1) |
| 43 | + |
| 44 | +-- 多項式の積を X^k - X^(k-1) - ... - X - 1 で割った余りを返す。 |
| 45 | +mulP :: Int -> P -> P -> P |
| 46 | +mulP !k !v !w = {- U.force $ -} U.create $ do |
| 47 | + let !vl = U.length v |
| 48 | + !wl = U.length w |
| 49 | + -- s <- UM.new (vl + wl - 1) |
| 50 | + -- forM_ [0 .. vl + wl - 2] $ \i -> do |
| 51 | + -- let !x = sum' [(v U.! (i-j)) * (w U.! j) | j <- [max 0 (i - vl + 1) .. min (wl - 1) i]] |
| 52 | + -- UM.write s i x |
| 53 | + let n = ceiling ((log (fromIntegral (vl .|. wl)) :: Double) / log 2) :: Int |
| 54 | + s <- U.thaw (doMulP (2^n) v w) |
| 55 | + reduceM k s |
| 56 | + |
| 57 | +-- 多項式に X をかけたものを X^k - X^(k-1) - ... - X - 1 で割った余りを返す。 |
| 58 | +mulByX :: Int -> P -> P |
| 59 | +mulByX !k !v |
| 60 | + | U.length v == k = let !v_k = v U.! (k-1) |
| 61 | + in U.generate k $ \i -> if i == 0 then |
| 62 | + v_k |
| 63 | + else |
| 64 | + v_k + (v U.! (i - 1)) |
| 65 | + | otherwise = U.cons 0 v |
| 66 | + |
| 67 | +-- X の(mod X^k - X^(k-1) - ... - X - 1 での)n 乗 |
| 68 | +powX :: Int -> Int -> P |
| 69 | +powX !k !n = doPowX n |
| 70 | + where |
| 71 | + doPowX 0 = U.fromList [1] -- 1 |
| 72 | + doPowX 1 = U.fromList [0,1] -- X |
| 73 | + doPowX i = case i `quotRem` 2 of |
| 74 | + (j,0) -> let !f = doPowX j -- X^j mod P |
| 75 | + in mulP k f f |
| 76 | + (j,_) -> let !f = doPowX j -- X^j mod P |
| 77 | + in mulByX k (mulP k f f) |
| 78 | + |
| 79 | +main :: IO () |
| 80 | +main = do |
| 81 | + [k,n] <- unfoldr (BS.readInt . BS.dropWhile isSpace) <$> BS.getLine |
| 82 | + -- 2 <= k <= 1000 |
| 83 | + -- 1 <= n <= 10^9 |
| 84 | + if n <= k then |
| 85 | + print 1 |
| 86 | + else do |
| 87 | + let f = powX k (n - k) -- X^(n-k) mod X^k - X^(k-1) - ... - X - 1 |
| 88 | + let seq = replicate k 1 ++ map (sum . take k) (tails seq) -- 数列 |
| 89 | + print $ sum $ zipWith (*) (U.toList f) (drop (k-1) seq) |
| 90 | + |
| 91 | +-- |
| 92 | +-- Modular Arithmetic |
| 93 | +-- |
| 94 | + |
| 95 | +newtype IntMod (m :: Nat) = IntMod { unwrapN :: Int64 } deriving (Eq) |
| 96 | + |
| 97 | +instance Show (IntMod m) where |
| 98 | + show (IntMod x) = show x |
| 99 | + |
| 100 | +instance KnownNat m => Num (IntMod m) where |
| 101 | + t@(IntMod x) + IntMod y |
| 102 | + | x + y >= modulus = IntMod (x + y - modulus) |
| 103 | + | otherwise = IntMod (x + y) |
| 104 | + where modulus = fromIntegral (natVal t) |
| 105 | + t@(IntMod x) - IntMod y |
| 106 | + | x >= y = IntMod (x - y) |
| 107 | + | otherwise = IntMod (x - y + modulus) |
| 108 | + where modulus = fromIntegral (natVal t) |
| 109 | + t@(IntMod x) * IntMod y = IntMod ((x * y) `rem` modulus) |
| 110 | + where modulus = fromIntegral (natVal t) |
| 111 | + fromInteger n = let result = IntMod (fromInteger (n `mod` fromIntegral modulus)) |
| 112 | + modulus = natVal result |
| 113 | + in result |
| 114 | + abs = undefined; signum = undefined |
| 115 | + {-# SPECIALIZE instance Num (IntMod 1000000007) #-} |
| 116 | + |
| 117 | +fromIntegral_Int64_IntMod :: KnownNat m => Int64 -> IntMod m |
| 118 | +fromIntegral_Int64_IntMod n = result |
| 119 | + where |
| 120 | + result | 0 <= n && n < modulus = IntMod n |
| 121 | + | otherwise = IntMod (n `mod` modulus) |
| 122 | + modulus = fromIntegral (natVal result) |
| 123 | + |
| 124 | +{-# RULES |
| 125 | +"fromIntegral/Int->IntMod" fromIntegral = fromIntegral_Int64_IntMod . (fromIntegral :: Int -> Int64) :: Int -> IntMod (10^9 + 7) |
| 126 | +"fromIntegral/Int64->IntMod" fromIntegral = fromIntegral_Int64_IntMod :: Int64 -> IntMod (10^9 + 7) |
| 127 | + #-} |
| 128 | + |
| 129 | +instance U.Unboxable (IntMod m) where |
| 130 | + type Rep (IntMod m) = Int64 |
| 131 | + |
| 132 | +-- |
| 133 | +-- Univariate polynomial |
| 134 | +-- |
| 135 | + |
| 136 | +newtype Poly vec a = Poly { coeffAsc :: vec a } deriving Eq |
| 137 | + |
| 138 | +normalizePoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a |
| 139 | +normalizePoly v | G.null v || G.last v /= 0 = v |
| 140 | + | otherwise = normalizePoly (G.init v) |
| 141 | + |
| 142 | +addPoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 143 | +addPoly v w = case compare n m of |
| 144 | + LT -> G.generate m $ \i -> if i < n |
| 145 | + then v G.! i + w G.! i |
| 146 | + else w G.! i |
| 147 | + GT -> G.generate n $ \i -> if i < m |
| 148 | + then v G.! i + w G.! i |
| 149 | + else v G.! i |
| 150 | + EQ -> normalizePoly $ G.zipWith (+) v w |
| 151 | + where n = G.length v |
| 152 | + m = G.length w |
| 153 | + |
| 154 | +subPoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 155 | +subPoly v w = case compare n m of |
| 156 | + LT -> G.generate m $ \i -> if i < n |
| 157 | + then v G.! i - w G.! i |
| 158 | + else negate (w G.! i) |
| 159 | + GT -> G.generate n $ \i -> if i < m |
| 160 | + then v G.! i - w G.! i |
| 161 | + else v G.! i |
| 162 | + EQ -> normalizePoly $ G.zipWith (-) v w |
| 163 | + where n = G.length v |
| 164 | + m = G.length w |
| 165 | + |
| 166 | +naiveMulPoly :: (Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 167 | +naiveMulPoly v w = G.generate (n + m - 1) $ |
| 168 | + \i -> sum [(v G.! (i-j)) * (w G.! j) | j <- [max (i-n+1) 0..min i (m-1)]] |
| 169 | + where n = G.length v |
| 170 | + m = G.length w |
| 171 | + |
| 172 | +doMulP :: (Eq a, Num a, G.Vector vec a) => Int -> vec a -> vec a -> vec a |
| 173 | +doMulP n !v !w | n <= 16 = naiveMulPoly v w |
| 174 | +doMulP n !v !w |
| 175 | + | G.null v = v |
| 176 | + | G.null w = w |
| 177 | + | G.length v < n2 = let (w0, w1) = G.splitAt n2 w |
| 178 | + u0 = doMulP n2 v w0 |
| 179 | + u1 = doMulP n2 v w1 |
| 180 | + in G.generate (G.length v + G.length w - 1) |
| 181 | + $ \i -> case () of |
| 182 | + _ | i < n2 -> u0 `at` i |
| 183 | + | i < n -> (u0 `at` i) + (u1 `at` (i - n2)) |
| 184 | + | i < n + n2 -> (u1 `at` (i - n2)) |
| 185 | + | G.length w < n2 = let (v0, v1) = G.splitAt n2 v |
| 186 | + u0 = doMulP n2 v0 w |
| 187 | + u1 = doMulP n2 v1 w |
| 188 | + in G.generate (G.length v + G.length w - 1) |
| 189 | + $ \i -> case () of |
| 190 | + _ | i < n2 -> u0 `at` i |
| 191 | + | i < n -> (u0 `at` i) + (u1 `at` (i - n2)) |
| 192 | + | i < n + n2 -> (u1 `at` (i - n2)) |
| 193 | + | otherwise = let (v0, v1) = G.splitAt n2 v |
| 194 | + (w0, w1) = G.splitAt n2 w |
| 195 | + v0_1 = v0 `addPoly` v1 |
| 196 | + w0_1 = w0 `addPoly` w1 |
| 197 | + p = doMulP n2 v0_1 w0_1 |
| 198 | + q = doMulP n2 v0 w0 |
| 199 | + r = doMulP n2 v1 w1 |
| 200 | + -- s = (p `subPoly` q) `subPoly` r -- p - q - r |
| 201 | + -- q + s*X^n2 + r*X^n |
| 202 | + in G.generate (G.length v + G.length w - 1) |
| 203 | + $ \i -> case () of |
| 204 | + _ | i < n2 -> q `at` i |
| 205 | + | i < n -> ((q `at` i) + (p `at` (i - n2))) - ((q `at` (i - n2)) + (r `at` (i - n2))) |
| 206 | + | i < n + n2 -> ((r `at` (i - n)) + (p `at` (i - n2))) - ((q `at` (i - n2)) + (r `at` (i - n2))) |
| 207 | + | otherwise -> r `at` (i - n) |
| 208 | + where n2 = n `quot` 2 |
| 209 | + at :: (Num a, G.Vector vec a) => vec a -> Int -> a |
| 210 | + at v i = if i < G.length v then v G.! i else 0 |
| 211 | +{-# INLINE doMulP #-} |
| 212 | + |
| 213 | +mulPoly :: (Eq a, Num a, G.Vector vec a) => vec a -> vec a -> vec a |
| 214 | +mulPoly !v !w = let k = ceiling ((log (fromIntegral (max n m)) :: Double) / log 2) :: Int |
| 215 | + in doMulP (2^k) v w |
| 216 | + where n = G.length v |
| 217 | + m = G.length w |
| 218 | +{-# INLINE mulPoly #-} |
| 219 | + |
| 220 | +zeroPoly :: (G.Vector vec a) => Poly vec a |
| 221 | +zeroPoly = Poly G.empty |
| 222 | + |
| 223 | +constPoly :: (Eq a, Num a, G.Vector vec a) => a -> Poly vec a |
| 224 | +constPoly 0 = Poly G.empty |
| 225 | +constPoly x = Poly (G.singleton x) |
| 226 | + |
| 227 | +scalePoly :: (Eq a, Num a, G.Vector vec a) => a -> Poly vec a -> Poly vec a |
| 228 | +scalePoly a (Poly xs) |
| 229 | + | a == 0 = zeroPoly |
| 230 | + | otherwise = Poly $ G.map (* a) xs |
| 231 | + |
| 232 | +valueAtPoly :: (Num a, G.Vector vec a) => Poly vec a -> a -> a |
| 233 | +valueAtPoly (Poly xs) t = G.foldr' (\a b -> a + t * b) 0 xs |
| 234 | + |
| 235 | +instance (Eq a, Num a, G.Vector vec a) => Num (Poly vec a) where |
| 236 | + (+) = coerce (addPoly :: vec a -> vec a -> vec a) |
| 237 | + (-) = coerce (subPoly :: vec a -> vec a -> vec a) |
| 238 | + negate (Poly v) = Poly (G.map negate v) |
| 239 | + (*) = coerce (mulPoly :: vec a -> vec a -> vec a) |
| 240 | + fromInteger = constPoly . fromInteger |
| 241 | + abs = undefined; signum = undefined |
| 242 | + |
| 243 | +divModPoly :: (Eq a, Fractional a, G.Vector vec a) => Poly vec a -> Poly vec a -> (Poly vec a, Poly vec a) |
| 244 | +divModPoly f g@(Poly w) |
| 245 | + | G.null w = error "divModPoly: divide by zero" |
| 246 | + | degree f < degree g = (zeroPoly, f) |
| 247 | + | otherwise = loop zeroPoly (scalePoly (recip b) f) |
| 248 | + where |
| 249 | + g' = toMonic g |
| 250 | + b = leadingCoefficient g |
| 251 | + -- invariant: f == q * g + scalePoly b p |
| 252 | + loop q p | degree p < degree g = (q, scalePoly b p) |
| 253 | + | otherwise = let q' = Poly (G.drop (degree' g) (coeffAsc p)) |
| 254 | + in loop (q + q') (p - q' * g') |
| 255 | + |
| 256 | + toMonic :: (Fractional a, G.Vector vec a) => Poly vec a -> Poly vec a |
| 257 | + toMonic f@(Poly xs) |
| 258 | + | G.null xs = zeroPoly |
| 259 | + | otherwise = Poly $ G.map (* recip (leadingCoefficient f)) xs |
| 260 | + |
| 261 | + leadingCoefficient :: (Num a, G.Vector vec a) => Poly vec a -> a |
| 262 | + leadingCoefficient (Poly xs) |
| 263 | + | G.null xs = 0 |
| 264 | + | otherwise = G.last xs |
| 265 | + |
| 266 | + degree :: G.Vector vec a => Poly vec a -> Maybe Int |
| 267 | + degree (Poly xs) = case G.length xs - 1 of |
| 268 | + -1 -> Nothing |
| 269 | + n -> Just n |
| 270 | + |
| 271 | + degree' :: G.Vector vec a => Poly vec a -> Int |
| 272 | + degree' (Poly xs) = case G.length xs of |
| 273 | + 0 -> error "degree': zero polynomial" |
| 274 | + n -> n - 1 |
| 275 | + |
| 276 | +-- 組立除法 |
| 277 | +-- second constPoly (divModByDeg1 f t) = divMod f (Poly (G.fromList [-t, 1])) |
| 278 | +divModByDeg1 :: (Eq a, Num a, G.Vector vec a) => Poly vec a -> a -> (Poly vec a, a) |
| 279 | +divModByDeg1 f t = let w = G.postscanr (\a b -> a + b * t) 0 $ coeffAsc f |
| 280 | + in (Poly (G.tail w), G.head w) |
0 commit comments