Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Detection项目的可运行版本,自己运行过程问题解决,补充了依赖库。

Notifications You must be signed in to change notification settings

maliqiang/PersonDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

16 Commits

Repository files navigation

Detection

基于视频的行人流量密度检测

1.detection.py:通过已经训练好的Faster-Rcnn参数实现对行人的识别并标记(其中标记行人的阈值为0.7,即识别率必须达到70%);
2.camshift2.py:利用mean-shift对已经标记的人进行目标跟踪,中间通过不断迭代更新行人目标位置并实时标记;
3.kalmon.py:借助卡尔曼滤波方式来对行人移动位置进行预测,提高目标跟踪的精度;
4.multi-object-tracking.py:利用多对象目标跟踪器实现对多个目标进行跟踪。
5. multi_camshift_detection.py:使用camshift方法进行目标跟踪,并利用卡尔曼滤波方法进行目标预测,从而实现多目标跟踪。(此方法目标标记框移动幅度较大)
6. multi_track_detection.py:正式完成的基于视频的行人目标跟踪及流量密度检测程序。

附属依赖库:

faster_rcnn_inception_v2_coco_2018_01_28(faster-rcnn网络框架)、 ssd_mobilenet_v1_coco_2018_01_28(ssd-mobilenet网络框架)、object_detection(目标检测库,为符合本程序使用中间有参数修改)

说明:本项目为基于视频的行人流量密度检测,所采用的编程语言为python,版本为3.6.4,所使用的主要工具库为opencv3.4。

主要使用方法:

(1) 图像预处理常用算法研究; (2) 背景建模算法研究; (3) 运动目标检测算法研究; (4) 目标匹配与跟踪算法

结果展示:

数据分析图:

PersonDetection

来源 :https://github.com/librahfacebook/Detection/ Detection项目的可运行版本,自己运行过程问题解决,补充了依赖库。并且基于TensorFlow2.0环境下对部分API进行了修复,使其可以正常运行。

About

Detection项目的可运行版本,自己运行过程问题解决,补充了依赖库。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

Languages

AltStyle によって変換されたページ (->オリジナル) /