Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

lsq1992/DeepLearningTutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

14 Commits

Repository files navigation

深度学习与PyTorch入门实战视频教程

课程涵盖了人工智能的发展历程,基本的数学理论,线性回归,逻辑回归,梯度及梯度下降,损失函数,多分类问题,BatchNorm,卷积神经网络CNN/ResNet,循环神经网络RNN/LSTM,对抗生成网络GAN/WGAN等等,以及对应的PyTorch的实现方式讲解。 学完本课程,学员对当前深度学习的核心内容有了全面深刻的掌握,同时工程能力也得到极大的提升。

详情请前往:https://study.163.com/provider/480000001847407/index.htm?share=2&shareId=480000001847407

课程开发环境:

  • Python 3.6 with Anaconda
  • CUDA 10.0
  • PyTorch 1.0
  • Windows 10

添加:

  1. CIFAR10与ResNet18实战
  2. AE和Variational AE实战

课程介绍

About

Deep Learning与PyTorch入门实战视频教程

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 60.6%
  • Jupyter Notebook 39.1%
  • Lua 0.3%

AltStyle によって変換されたページ (->オリジナル) /