Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

🐚 A summary of 9 mainstream algorithms practice, including : Logistic Regression / Decision Tree / Random Forest / Adaboost / SVM / Clustering / EM / Bayes Network / LDA / HMM.

Notifications You must be signed in to change notification settings

littleheap/MachineLearning-Algorithms

Repository files navigation

MachineLearning-Algorithms (机器学习算法项目整合)

项目背景

该项目是我个人在学习ML基础过程中,操纵实践基础算法的整理合集,每一个小项目中,都有最新的,基于Python3.6实践相应算法到数据上的代码。理论内容几乎协同《统计学习方法》,算法实战同时有着几乎最详尽的注释。所有都是在我学习每个算法基础理论推导后,调用第三方库函数和相关算法框架,实现相关基于机器学习的算法实战内容,查看实现效果。具体每个小项目中有Readme说明。欢迎了解和完善。

项目简介

名称 简介
1.Python Foundation Python基础要点回顾
2.Management Foundation 机器学习基础操作要点
3.Regression 回归算法实战
4.Decision Tree & Random Forest 决策树&随机森林算法实战
5.Boost Boost算法实战
6.SVM SVM支撑向量机实战
7.Cluster 聚类算法实战
8.EM Model EM算法实战
9.Bayes Network 贝叶斯网络实战
10.LDA Topic Model LDA主题模型实战
11.HMM HMM隐马尔可夫模型实战

About

🐚 A summary of 9 mainstream algorithms practice, including : Logistic Regression / Decision Tree / Random Forest / Adaboost / SVM / Clustering / EM / Bayes Network / LDA / HMM.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /