Learning Deep Structured Semantic Models for Web Search using Clickthrough Data以及其后续文章
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems的实现Demo。
由于之前代码api过时,已更新最新代码于:dssm_rnn.py
数据处理代码data_input.py 和数据data 已经更新,由于使用了rnn,所以输入非bag of words方式。
来源:Palangi, Hamid, et al. "Semantic modelling with long-short-term memory for information retrieval." arXiv preprint arXiv:1412.6629 2014.
训练损失,在45个epoch时基本不下降:
DSSM,对于输入数据是Query对,即Query短句和相应的展示,展示中分点击和未点击,分别为正负样,同时对于点击的先后顺序,也是有不同赋值,具体可参考论文。
对于我的Query数据本人无权开放,还请自行寻找数据。 环境:
- win, python3.5, tensorflow1.4.
原文使用3-grams,对于中文,我使用了uni-gram,因为中文本身字有一定代表意义(也有论文拆笔画),对于每个gram都使用one-hot编码代替,最终可以大大降低短句维度。
结构图:
- 把条目映射成低维向量。
- 计算查询和文档的cosine相似度。
这里使用了TensorBoard可视化,所以定义了name_scope:
with tf.name_scope('input'): query_batch = tf.sparse_placeholder(tf.float32, shape=[None, TRIGRAM_D], name='QueryBatch') doc_positive_batch = tf.sparse_placeholder(tf.float32, shape=[None, TRIGRAM_D], name='DocBatch') doc_negative_batch = tf.sparse_placeholder(tf.float32, shape=[None, TRIGRAM_D], name='DocBatch') on_train = tf.placeholder(tf.bool)
我使用三层的全连接层,对于每一层全连接层,除了神经元不一样,其他都一样,所以可以写一个函数复用。 $$ l_n = W_n x + b_1 $$
def add_layer(inputs, in_size, out_size, activation_function=None): wlimit = np.sqrt(6.0 / (in_size + out_size)) Weights = tf.Variable(tf.random_uniform([in_size, out_size], -wlimit, wlimit)) biases = tf.Variable(tf.random_uniform([out_size], -wlimit, wlimit)) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs
其中,对于权重和Bias,使用了按照论文的特定的初始化方式:
wlimit = np.sqrt(6.0 / (in_size + out_size)) Weights = tf.Variable(tf.random_uniform([in_size, out_size], -wlimit, wlimit)) biases = tf.Variable(tf.random_uniform([out_size], -wlimit, wlimit))
def batch_normalization(x, phase_train, out_size): """ Batch normalization on convolutional maps. Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow Args: x: Tensor, 4D BHWD input maps out_size: integer, depth of input maps phase_train: boolean tf.Varialbe, true indicates training phase scope: string, variable scope Return: normed: batch-normalized maps """ with tf.variable_scope('bn'): beta = tf.Variable(tf.constant(0.0, shape=[out_size]), name='beta', trainable=True) gamma = tf.Variable(tf.constant(1.0, shape=[out_size]), name='gamma', trainable=True) batch_mean, batch_var = tf.nn.moments(x, [0], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.5) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) return normed
with tf.name_scope('FC1'): # 激活函数在BN之后,所以此处为None query_l1 = add_layer(query_batch, TRIGRAM_D, L1_N, activation_function=None) doc_positive_l1 = add_layer(doc_positive_batch, TRIGRAM_D, L1_N, activation_function=None) doc_negative_l1 = add_layer(doc_negative_batch, TRIGRAM_D, L1_N, activation_function=None) with tf.name_scope('BN1'): query_l1 = batch_normalization(query_l1, on_train, L1_N) doc_l1 = batch_normalization(tf.concat([doc_positive_l1, doc_negative_l1], axis=0), on_train, L1_N) doc_positive_l1 = tf.slice(doc_l1, [0, 0], [query_BS, -1]) doc_negative_l1 = tf.slice(doc_l1, [query_BS, 0], [-1, -1]) query_l1_out = tf.nn.relu(query_l1) doc_positive_l1_out = tf.nn.relu(doc_positive_l1) doc_negative_l1_out = tf.nn.relu(doc_negative_l1) ······
合并负样本
with tf.name_scope('Merge_Negative_Doc'): # 合并负样本,tile可选择是否扩展负样本。 doc_y = tf.tile(doc_positive_y, [1, 1]) for i in range(NEG): for j in range(query_BS): # slice(input_, begin, size)切片API doc_y = tf.concat([doc_y, tf.slice(doc_negative_y, [j * NEG + i, 0], [1, -1])], 0)
with tf.name_scope('Cosine_Similarity'): # Cosine similarity # query_norm = sqrt(sum(each x^2)) query_norm = tf.tile(tf.sqrt(tf.reduce_sum(tf.square(query_y), 1, True)), [NEG + 1, 1]) # doc_norm = sqrt(sum(each x^2)) doc_norm = tf.sqrt(tf.reduce_sum(tf.square(doc_y), 1, True)) prod = tf.reduce_sum(tf.multiply(tf.tile(query_y, [NEG + 1, 1]), doc_y), 1, True) norm_prod = tf.multiply(query_norm, doc_norm) # cos_sim_raw = query * doc / (||query|| * ||doc||) cos_sim_raw = tf.truediv(prod, norm_prod) # gamma = 20 cos_sim = tf.transpose(tf.reshape(tf.transpose(cos_sim_raw), [NEG + 1, query_BS])) * 20
with tf.name_scope('Loss'): # Train Loss # 转化为softmax概率矩阵。 prob = tf.nn.softmax(cos_sim) # 只取第一列,即正样本列概率。 hit_prob = tf.slice(prob, [0, 0], [-1, 1]) loss = -tf.reduce_sum(tf.log(hit_prob)) tf.summary.scalar('loss', loss)
with tf.name_scope('Training'): # Optimizer train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(loss)
# 创建一个Saver对象,选择性保存变量或者模型。 saver = tf.train.Saver() # with tf.Session(config=config) as sess: with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) start = time.time() for step in range(FLAGS.max_steps): batch_id = step % FLAGS.epoch_steps sess.run(train_step, feed_dict=feed_dict(True, True, batch_id % FLAGS.pack_size, 0.5))
GitHub完整代码 https://github.com/InsaneLife/dssm
Multi-view DSSM实现同理,可以参考GitHub:multi_view_dssm_v3
CSDN原文:http://blog.csdn.net/shine19930820/article/details/79042567