Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

PSEnet tf2.0 reimplementation for better training and inference and ResneSt/Mobilenet/ tensorflow2 implement/ Top 6 model in MTWI 2018 Text Detection

License

Notifications You must be signed in to change notification settings

li10141110/PSENet-tf2

Repository files navigation

Shape Robust Text Detection with Progressive Scale Expansion Network

Requirements

  • Python3
  • pyclipper
  • Polygon2
  • OpenCV
  • TensorFlow 2.0+

Introduction

(PSENet-tf2.0)Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene. Besides, based on this text segmentation model, we got top 6 in MTWI 2018 Text Detection Challenge

Training (polygon)

CUDA_VISIBLE_DEVICES=0 python train_ic15.py

Testing (polygon)

CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model]

Training (quadrilateral)

CUDA_VISIBLE_DEVICES=0 python train_id41k.py

Testing (quadrilateral)

CUDA_VISIBLE_DEVICES=0 python test_id41k.py --scale 1 --resume [path of model]

Eval script for ICDAR 2015 and SCUT-CTW1500

cd eval
sh eval_ic15.sh
sh eval_ctw1500.sh

Performance (new version paper)

Method Extra Data Precision (%) Recall (%) F-measure (%) FPS (1080Ti) Model
PSENet-1s (ResNet50) - 81.49 79.68 80.57 1.6 baiduyun(extract code: rxti); OneDrive
PSENet-1s (ResNet50) pretrain on IC17 MLT 86.92 84.5 85.69 1.6 baiduyun(extract code: aieo); OneDrive
PSENet-4s (ResNet50) pretrain on IC17 MLT 86.1 83.77 84.92 3.8 baiduyun(extract code: aieo); OneDrive
Method Extra Data Precision (%) Recall (%) F-measure (%) FPS (1080Ti) Model
PSENet-1s (ResNet50) - 80.57 75.55 78.0 3.9 baiduyun(extract code: ksv7); OneDrive
PSENet-1s (ResNet50) pretrain on IC17 MLT 84.84 79.73 82.2 3.9 baiduyun(extract code: z7ac); OneDrive
PSENet-4s (ResNet50) pretrain on IC17 MLT 82.09 77.84 79.9 8.4 baiduyun(extract code: z7ac); OneDrive

Performance (old version paper)

ICDAR 2015 (training with ICDAR 2017 MLT)

Method Precision (%) Recall (%) F-measure (%)
PSENet-4s (ResNet152) 87.98 83.87 85.88
PSENet-2s (ResNet152) 89.30 85.22 87.21
PSENet-1s (ResNet152) 88.71 85.51 87.08
Method Precision (%) Recall (%) F-measure (%)
PSENet-4s (ResNet152) 75.98 67.56 71.52
PSENet-2s (ResNet152) 76.97 68.35 72.40
PSENet-1s (ResNet152) 77.01 68.40 72.45
Method Precision (%) Recall (%) F-measure (%)
PSENet-4s (ResNet152) 80.49 78.13 79.29
PSENet-2s (ResNet152) 81.95 79.30 80.60
PSENet-1s (ResNet152) 82.50 79.89 81.17
Method Precision (%) Recall (%) F-measure (%)
PSENet-1s (ResNet152) 8.28 70.0 76

Results

Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500

Paper Link

[new version paper] https://arxiv.org/abs/1903.12473

[old version paper] https://arxiv.org/abs/1806.02559

Other Implements

[pytorch version (thanks @WenmuZhou)] (https://github.com/WenmuZhou/PSENet.pytorch)

[tensorflow1.x version (thanks @liuheng92)] https://github.com/liuheng92/tensorflow_PSENet

Thanks and collaborator

laizhihui @ lzh

Citation

@inproceedings{wang2019shape,
 title={Shape Robust Text Detection With Progressive Scale Expansion Network},
 author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
 booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
 pages={9336--9345},
 year={2019}
}

About

PSEnet tf2.0 reimplementation for better training and inference and ResneSt/Mobilenet/ tensorflow2 implement/ Top 6 model in MTWI 2018 Text Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /