Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Virtual Machine implementation, for the toy Synacor achitecture

Notifications You must be signed in to change notification settings

landhb/synacor-vm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

25 Commits

Repository files navigation

Test Driven Development Exercise - Synacor VM

This repo contains an implementation of the Synacor Challenge VM with tests written using the Snow library. A blog post about the development can be located here.

tests

== architecture ==

  • three storage regions
    • memory with 15-bit address space storing 16-bit values
    • eight registers
    • an unbounded stack which holds individual 16-bit values
  • all numbers are unsigned integers 0..32767 (15-bit)
  • all math is modulo 32768; 32758 + 15 => 5

== binary format ==

  • each number is stored as a 16-bit little-endian pair (low byte, high byte)
  • numbers 0..32767 mean a literal value
  • numbers 32768..32775 instead mean registers 0..7
  • numbers 32776..65535 are invalid
  • programs are loaded into memory starting at address 0
  • address 0 is the first 16-bit value, address 1 is the second 16-bit value, etc

== execution ==

  • After an operation is executed, the next instruction to read is immediately after the last argument of the current operation. If a jump was performed, the next operation is instead the exact destination of the jump.
  • Encountering a register as an operation argument should be taken as reading from the register or setting into the register as appropriate.

== hints ==

  • The program "9,32768,32769,4,19,32768" occupies six memory addresses and should:
    • Store into register 0 the sum of 4 and the value contained in register 1.
    • Output to the terminal the character with the ascii code contained in register 0.

== opcode listing ==

halt: 0
 stop execution and terminate the program
set: 1 a b
 set register <a> to the value of <b>
push: 2 a
 push <a> onto the stack
pop: 3 a
 remove the top element from the stack and write it into <a>; empty stack = error
eq: 4 a b c
 set <a> to 1 if <b> is equal to <c>; set it to 0 otherwise
gt: 5 a b c
 set <a> to 1 if <b> is greater than <c>; set it to 0 otherwise
jmp: 6 a
 jump to <a>
jt: 7 a b
 if <a> is nonzero, jump to <b>
jf: 8 a b
 if <a> is zero, jump to <b>
add: 9 a b c
 assign into <a> the sum of <b> and <c> (modulo 32768)
mult: 10 a b c
 store into <a> the product of <b> and <c> (modulo 32768)
mod: 11 a b c
 store into <a> the remainder of <b> divided by <c>
and: 12 a b c
 stores into <a> the bitwise and of <b> and <c>
or: 13 a b c
 stores into <a> the bitwise or of <b> and <c>
not: 14 a b
 stores 15-bit bitwise inverse of <b> in <a>
rmem: 15 a b
 read memory at address <b> and write it to <a>
wmem: 16 a b
 write the value from <b> into memory at address <a>
call: 17 a
 write the address of the next instruction to the stack and jump to <a>
ret: 18
 remove the top element from the stack and jump to it; empty stack = halt
out: 19 a
 write the character represented by ascii code <a> to the terminal
in: 20 a
 read a character from the terminal and write its ascii code to <a>; it can be assumed that once input starts, it will continue until a newline is encountered; this means that you can safely read whole lines from the keyboard and trust that they will be fully read
noop: 21
 no operation

About

Virtual Machine implementation, for the toy Synacor achitecture

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /