Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

johan-gras/MuZero

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

13 Commits

Repository files navigation

MuZero

This repository is a Python implementation of the MuZero algorithm. It is based upon the pre-print paper and the pseudocode describing the Muzero framework. Neural computations are implemented with Tensorflow.

You can easily train your own MuZero, more specifically for one player and non-image based environments (such as CartPole). If you wish to train Muzero on other kinds of environments, this codebase can be used with slight modifications.

DISCLAIMER: this code is early research code. What this means is:

  • Silent bugs may exist.
  • It may not work reliably on other environments or with other hyper-parameters.
  • The code quality and documentation are quite lacking, and much of the code might still feel "in-progress".
  • The training and testing pipeline is not very advanced.

Dependencies

We run this code using:

  • Conda 4.7.12
  • Python 3.7
  • Tensorflow 2.0.0
  • Numpy 1.17.3

Training your MuZero

This code must be run from the main function in muzero.py (don't forget to first configure your conda environment).

Training a Cartpole-v1 bot

To train a model, please follow these steps:

  1. Create or modify an existing configuration of Muzero in config.py.
  2. Call the right configuration inside the main of muzero.py.
  3. Run the main function: python muzero.py.

Training on an other environment

To train on a different environment than Cartpole-v1, please follow these additional steps:

1) Create a class that extends AbstractGame, this class should implement the behavior of your environment. For instance, the CartPole class extends AbstractGame and works as a wrapper upon gym CartPole-v1. You can use the CartPole class as a template for any gym environment.

2) This step is optional (only if you want to use a different kind of network architecture or value/reward transform). Create a class that extends BaseNetwork, this class should implement the different networks (representation, value, policy, reward and dynamic) and value/reward transforms. For instance, the CartPoleNetwork class extends BaseNetwork and implements fully connected networks.

3) This step is optional (only if you use a different value/reward transform). You should implement the corresponding inverse value/reward transform by modifying the loss_value and loss_reward function inside training.py.

Differences from the paper

This implementation differ from the original paper in the following manners:

  • We use fully connected layers instead of convolutional ones. This is due to the nature of our environment (Cartpole-v1) which as no spatial correlation in the observation vector.
  • We don't scale the hidden state between 0 and 1 using min-max normalization. Instead we use a tanh function that maps any values in a range between -1 and 1.
  • We do use a slightly simple invertible transform for the value prediction by removing the linear term.
  • During training, samples are drawn from a uniform distribution instead of using prioritized replay.
  • We also scale the loss of each head by 1/K (with K the number of unrolled steps). But, instead we consider that K is always constant (even if it is not always true).

About

A structured implementation of MuZero

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /