Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Fix group offloading synchronization bug for parameter-only GroupModule's #12077

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
a-r-r-o-w merged 11 commits into main from fix-group-offload-sync-bug
Aug 6, 2025

Conversation

Copy link
Contributor

@a-r-r-o-w a-r-r-o-w commented Aug 5, 2025

Fixes #11981.

Requires #11990 to be merged first.

code
import contextlib
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.hooks import apply_group_offloading, ModelHook, HookRegistry
from diffusers.models import ModelMixin
from diffusers.utils.logging import set_verbosity_debug
from torch.profiler import profile, record_function, ProfilerActivity
set_verbosity_debug()
class LayerOutputTrackerHook(ModelHook):
 def __init__(self):
 super().__init__()
 self.outputs = []
 
 def post_forward(self, module, output):
 self.outputs.append(output)
 return output
class Model(ModelMixin):
 def __init__(self, d_model=1024, num_layers=1):
 super().__init__()
 self.d_model = d_model
 
 self.input_proj = nn.Linear(1024, d_model)
 # self.norm = nn.LayerNorm(d_model, elementwise_affine=True)
 self.blocks = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(num_layers)])
 
 # This is problematic
 self.norm = nn.LayerNorm(d_model, elementwise_affine=True)
 # This works
 # self.norm = nn.LayerNorm(d_model, elementwise_affine=False)
 
 self.output_proj = nn.Linear(d_model, 1024)
 
 def forward(self, x):
 x = self.input_proj(x)
 # x = self.norm(x)
 for block in self.blocks:
 x = block(x)
 x = F.relu(x)
 x = self.norm(x)
 x = self.output_proj(x)
 return x
def apply_layer_output_tracker_hook(model: Model):
 for name, module in model.named_modules():
 if not isinstance(module, (torch.nn.Linear, torch.nn.LayerNorm)):
 continue
 registry = HookRegistry.check_if_exists_or_initialize(module)
 hook = LayerOutputTrackerHook()
 registry.register_hook(hook, "layer_output_tracker")
def print_output_diffs(ref_model: Model, model: Model):
 for (ref_name, ref_module), (name, module) in zip(ref_model.named_modules(), model.named_modules()):
 assert ref_name == name
 if not isinstance(ref_module, (torch.nn.Linear, torch.nn.LayerNorm)):
 continue
 ref_outputs = HookRegistry.check_if_exists_or_initialize(ref_module).get_hook("layer_output_tracker").outputs
 outputs = HookRegistry.check_if_exists_or_initialize(module).get_hook("layer_output_tracker").outputs
 cumulated_absmax = 0.0
 for i in range(len(outputs)):
 diff = ref_outputs[0] - outputs[i]
 absdiff = diff.abs()
 absmax = absdiff.max().item()
 cumulated_absmax += absmax
 if ref_name == "output_proj":
 print(f"{ref_name} absmax {i}: {absmax}")
 print(f"{name}: cumulated_absmax={cumulated_absmax:.5f}, num_outputs={len(outputs)}")
torch.manual_seed(42)
model_ref = Model()
model1 = Model()
model2 = Model()
model1.load_state_dict(model_ref.state_dict())
model2.load_state_dict(model_ref.state_dict())
model_ref.eval()
model1.eval()
model2.eval()
onload_device = torch.device("cuda:0")
offload_device = torch.device("cpu")
model_ref = model_ref.to(onload_device)
apply_group_offloading(
 model1,
 onload_device=onload_device,
 offload_device=offload_device,
 offload_type="block_level",
 num_blocks_per_group=1,
 use_stream=True,
)
apply_group_offloading(
 model2,
 onload_device=onload_device,
 offload_device=offload_device,
 offload_type="leaf_level",
 use_stream=True,
)
apply_layer_output_tracker_hook(model_ref)
apply_layer_output_tracker_hook(model1)
apply_layer_output_tracker_hook(model2)
x = torch.randn(1, 512, 1024).to("cuda")
out_ref = model_ref(x)
def compare_outputs(out1, out2):
 diff = out1 - out2
 absdiff = diff.abs()
 absmax = absdiff.max()
 mae = absdiff.mean()
 mse = (absdiff ** 2).mean()
 cossim = F.cosine_similarity(out1.flatten(), out2.flatten(), dim=0)
 print(f"{absmax=:.5f}, {mae=:.5f}, {mse=:.5f}, {cossim=:.5f}")
for _ in range(2):
 model1(x)
 print("=" * 80)
 model2(x)
do_profile = False
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
# context = profile(
# activities=activities,
# record_shapes=True,
# profile_memory=True,
# with_stack=True,
# ) if do_profile else contextlib.nullcontext()
context = contextlib.nullcontext()
with context as prof:
 with torch.inference_mode():
 for i in range(10):
 with record_function(f"model_1_run_{i}"):
 output1 = model1(x)
 print(i)
 compare_outputs(out_ref, output1)
 print()
 print("=" * 80)
 
 for i in range(10):
 with record_function(f"model_2_run_{i}"):
 output2 = model2(x)
 print(i)
 compare_outputs(out_ref, output2)
 print()
print_output_diffs(model_ref, model1)
print()
print_output_diffs(model_ref, model2)
# prof.export_chrome_trace("dump_trace.json")
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=1000))

Tested for 100 rounds with:

seq 100 | xargs -Iz python3 dump12.py

Testing with profiling is not helpful because the problem never shows up. See heisenbug thread: https://huggingface.slack.com/archives/C065E480NN9/p1754035222558869

sayakpaul reacted with rocket emoji

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Contributor Author

cc @seed93, this seems to resolve many different tests I tried that were previously causing outputs to be different. Could you verify on your end if everything works well? Thanks 🤗

Copy link
Member

Let's quickly merge the cleaning PR so that it's easier to review this one :)

Copy link

seed93 commented Aug 6, 2025 via email

Sorry, I am on a long vacation. Maybe I will try at night.-------- 原始邮件 --------发件人: Aryan ***@***.***>日期: 2025年8月6日周三 06:43收件人: huggingface/diffusers ***@***.***>抄送: seed93 ***@***.***>, Mention ***@***.***>主 题: Re: [huggingface/diffusers] Fix group offloading synchronization bug for parameter-only GroupModule's (PR #12077)a-r-r-o-w left a comment (huggingface/diffusers#12077) cc @seed93, this seems to resolve many different tests I tried that were previously causing outputs to be different. Could you verify on your end if everything works well? Thanks 🤗 —Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you were mentioned.Message ID: ***@***.***>

Copy link
Member

@sayakpaul sayakpaul left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ridiculously simple fix yet ridiculously critical heisenbug.

Comment on lines 314 to 316
# If this group didn't onload itself, it means it was asynchronously onloaded by the
# previous group. We need to synchronize the side stream to ensure parameters
# are completely loaded to proceed with forward pass.
Copy link
Member

@sayakpaul sayakpaul Aug 6, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(nit): It would be beneficial to comment on the consequences of not performing this synchronization.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Copy link
Contributor Author

Sometimes the hardest of problems have the simplest solutions :)

Failing tests are unrelated

@a-r-r-o-w a-r-r-o-w merged commit 69cdc25 into main Aug 6, 2025
14 of 15 checks passed
@a-r-r-o-w a-r-r-o-w deleted the fix-group-offload-sync-bug branch August 6, 2025 15:41
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Reviewers

@sayakpaul sayakpaul sayakpaul approved these changes

@DN6 DN6 Awaiting requested review from DN6

Assignees
No one assigned
Labels
None yet
Projects
None yet
Milestone
No milestone
Development

Successfully merging this pull request may close these issues.

Groupoffloading introduce bad results

AltStyle によって変換されたページ (->オリジナル) /