This repository documents my hands-on learning process in computer vision, focusing on:
- YOLOv8 — object detection workflows, parameter exploration, and result analysis
- OpenCV — fundamental image processing techniques and experiments
It combines code, notes, datasets, and generated artifacts to form a reproducible learning pipeline.
. ├── src/ # Source code │ ├── Yolo/ # YOLOv8 experiments and scripts │ └── OpenCV/ # Image processing notebooks │ ├── notebook/ # Structured learning notes (Markdown) │ ├── Yolo/ │ └── OpenCV/ │ ├── data/ # Input datasets (images / videos) │ ├── artifacts/ # Generated outputs from experiments │ ├── OpenCV/ # Processed images │ └── Yolo/ # Detection results │ ├── models/ # Model weights (e.g., yolov8n.pt) │ ├── runs/ # Ultralytics default output directory │ ├── pyproject.toml # Dependency management (uv) └── README.md
- Reproducible YOLOv8 inference workflows
- Parameter sensitivity experiments
- OpenCV preprocessing demonstrations
- Organized Markdown notes for theory + practice
- Clean separation of data → code → artifacts
- Python >= 3.12
- torch, torchvision
- ultralytics (YOLOv8)
- OpenCV
- matplotlib
- jupyterlab
Install dependencies:
uv sync
Run a YOLO demo
uv run src/Yolo/01demo/main.py
Explore OpenCV Jupyter experiments
jupyter notebook src/OpenCV/