Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 02f8509

Browse files
P-Shreyas-Shettypoyea
authored andcommitted
Implementation of Newton-Raphson method (TheAlgorithms#650)
Implemented Newton-Raphson method using pure python. Third party library is used only for visualizing error variation with each iteration.
1 parent a0d5c9a commit 02f8509

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed

‎maths/newton_raphson.py

Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
'''
2+
Author: P Shreyas Shetty
3+
Implementation of Newton-Raphson method for solving equations of kind
4+
f(x) = 0. It is an iterative method where solution is found by the expression
5+
x[n+1] = x[n] + f(x[n])/f'(x[n])
6+
If no solution exists, then either the solution will not be found when iteration
7+
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
8+
is raised. If iteration limit is reached, try increasing maxiter.
9+
'''
10+
11+
import math as m
12+
13+
def calc_derivative(f, a, h=0.001):
14+
'''
15+
Calculates derivative at point a for function f using finite difference
16+
method
17+
'''
18+
return (f(a+h)-f(a-h))/(2*h)
19+
20+
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False):
21+
22+
a = x0 #set the initial guess
23+
steps = [a]
24+
error = abs(f(a))
25+
f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x)
26+
for _ in range(maxiter):
27+
if f1(a) == 0:
28+
raise ValueError("No converging solution found")
29+
a = a - f(a)/f1(a) #Calculate the next estimate
30+
if logsteps:
31+
steps.append(a)
32+
error = abs(f(a))
33+
if error < maxerror:
34+
break
35+
else:
36+
raise ValueError("Itheration limit reached, no converging solution found")
37+
if logsteps:
38+
#If logstep is true, then log intermediate steps
39+
return a, error, steps
40+
return a, error
41+
42+
if __name__ == '__main__':
43+
import matplotlib.pyplot as plt
44+
f = lambda x:m.tanh(x)**2-m.exp(3*x)
45+
solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True)
46+
plt.plot([abs(f(x)) for x in steps])
47+
plt.xlabel("step")
48+
plt.ylabel("error")
49+
plt.show()
50+
print("solution = {%f}, error = {%f}" % (solution, error))

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /