Hi there , I'm Jay
💎 Hello there! I'm thrilled to have you visit my GitHub profile. Here, you'll find a collection of my projects, contributions, and explorations in the world of software development 💎
💎 Welcome to my GitHub Profile 💎
🔭 I’m currently studying on Artificial Intelligence, Machine Learning, Quantum Technology, A.I Cloud and Biology.
📓 I am currently a third year student pursuing a BS in Computer Science with a specialization in Machine Learning at National University.
📓 I'm planning to take a Master Degree for Artificial Intelligence or BioInformatics by the year of 2027
🧠 In addition to my studies at National University, I am also enrolled in the "CS50’s
🧠 Introduction to Artificial Intelligence with Python" course at Harvard University.
🧊 I have accumulated 8 years of experience as a Software Engineer and Blockchain Developer, starting from 2018.
👯 I’m looking to collaborate on any Data Science, LLM and Web3 projects
🤝 I’m looking for help to work with Cloud Computing, Artificial Intelligence, Machine Learning, and Blockchain Development
🤝 I would love to level-up my knowledge in BioInformatics, Cyber Security, Quantum Computing, Robotic Process Automation
🌱 I’m currently learning more about Rust, Go, Consensus Algorithm of Blockchain Technology and other Blockchain EVM
🌐 I’m also exploring some revolutionary technology such as Web 4.0, Generative AI, IoT, Cloud Computing and Augmented Reality
🦾 Programming: I'm currently learning more on programming languages such as Python, R, Java & C++ so I can build and implement models.
📈 Probability, statistics, and linear algebra: These are my math buddy needed to implement different AI and machine learning models.
🧊 Big data technologies: AI engineers work with large amounts of data, so I’ll be required to know Apache Spark, Hadoop, and MongoDB.
🤖 Algorithms & frameworks: I'm currently self studying some machine learning algorithms such as linear regression and Naive Bayes,
🤖 as well as deep learning algorithms such as recurrent neural networks and generative adversarial networks, and be able to implement
🤖 them with a framework. Common AI frameworks include Theano, TensorFlow, Caffe, Keras, and PyTorch.
💬 Ask me about Artificial Intelligence and Machine Learning
🎮 I'm a Dallas Mavericks fan since 2011, guess my idol 🤫
🌐 Kindly visit my other GitHub profile: flexyledger for more content related to blockchain development
📫 How to reach me flexycode.dev@gmail.com, flexycode@protonmail.com, flexyledger@gmail.com
⚡Fun fact : I'm good at learning new things and adapting easily
⚡Fun fact : I always read and write documentation everyday before I begin to code
⚡Fun fact : I love Final Fantasy, Science Fiction, Biology, Architecture, Astrology, Mutants and Galaxy Adventure
⚡Fun fact : I also play League of Legends, Teamfight Tactics, Wild Rift, Legends of Runeterra, NBA2K
python node java android react-native kotlin react vue angular php golang rust solidity Github linux bash
React icon
Python icon
JavaScript icon
C++ icon
Webpack icon
MySQL icon
TypeScript icon
AWS icon
C#
ethereum ethereum-classic solidity openzeppelin rust bitcoin linux ubuntu remix hardhat
python R Julia colab lua huggingface
C++ lua autocad directX unreal-engine
C++ Go GraphQL Rust Solidity TypeScript JavaScript HTML5 CSS3 Netlify Heroku Vercel Google Cloud AWS Azure DigitalOcean Bootstrap Fastify Gatsby Next JS NodeJS NPM React Redux React Router Threejs Svelte Semantic UI React Nginx MySQL Supabase MongoDB Affinity Designer Adobe Photoshop Confluence Kubernetes Docker Rancher
GitHub Workflow Status GitHub release GitHub marketplace type definitions code style
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
Icons |
---|
♻️ - refactor getGithubUserContribution |
✨ - read contribution calendar from github api or remove some attributes |
📓 - commit or add readme |
👷 - add manual run, repair |
🚑 - import or also commit |
🔨 - fix algorithm priority |
🚀 - add emojis and style |
🤫 - smiley face can also use for indicator for running or stopping some container |
⛓️ - for linking file or repo |
💱 - using solidity, hardhat or crypto related function |
🧊 - Blockchain |
🌐 - networking setting, YAML file |
📋 - List of Content |
🔥 - Published Paper Link |
👀 - Getting Started |
💻 - System Overview or Architecture Image |
⚡ - Our Solution |
⏯️ - Explanation + Demo Video |
💊 - Pharmaceutical |
🔒 - LICENSE |
image - GitHub Project Link |
🖨️ Technologies Icons :
Flexycode | Flexyledger |
---|---|
➡️ 🚍 Communication | ➡️ 🧮 Fortran |
➡️ 🧰 Version Control | ➡️ ☎️ Erlang/Elixir |
➡️ 🔨 Tools | ➡️ 🧪 Testing |
➡️ 🌐 Web Dev | ➡️ 📱 Mobile Dev |
➡️ 📜 JavaScript | ➡️ ✨ UI/UX |
➡️ ☕ Java | ➡️ 🧊 Apache |
➡️ ©️ C/C++ | ➡️ 🎮 Game Development |
➡️ 🪒 C# | ➡️ 🔬 Analytics |
➡️ 🐍 Python | ➡️ 🤖 AI |
➡️ 🐘 PHP | ➡️ 💾 Database |
➡️ 💎 Ruby | ➡️ ☁️ Cloud |
➡️ 🦾 Rust | ➡️ 🖥️ Operating system |
➡️ 🐿️ Go | ➡️ 🤿 DevOps |
➡️ 🍼 How to use this icons? | ➡️ 🚶 Contribution |
🖨️ Development Icons :
Fullstack | Blockchain |
---|---|
➡️ ⚡ Next.js 15 | ➡️ 🧩 Component Library |
➡️ 🎨 Tailwind CSS | ➡️ 🎮 AI Playground |
➡️ 📘 TypeScript | ➡️ 📊 Dashboard Template |
➡️ 🔒 Authentication | ➡️ 🔍 SEO Optimized |
➡️ 🎭 Shadcn/ui | ➡️ ✨ UI/UX |
➡️ 💾 Convex DB | ➡️ 🎬 Custom Video Player |
➡️ 💳 Polar.sh | ➡️ 🎮 Game Development |
➡️ 🚀 Route Prefetching | ➡️ 📝 Blog Support |
➡️ 🖼️ Optimized Images | ➡️ 🔄 State Management |
➡️ 🌓 Dark/Light Mode | ➡️ 💾 Database |
➡️ 📱 Responsive Design | ➡️ ☁️ Cloud |
➡️ 💾 State Persistence | ➡️ 🌐 API Integration |
➡️ 🔄 Real-time Updates | ➡️ 🤿 DevOps |
➡️ 🍼 How to use this icons? | ➡️ 🚶 Contribution |
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
# Import the necessary libraries for AI
import numpy as np
import pandas as pd
import tensorflow as tf
# Define the AI model architecture
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu', input_dim=10))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
# Compile and train the AI model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, batch_size=32)
# Use the AI model for predictions
predictions = model.predict(X_test)
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
# Import the necessary libraries for ML
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# Load the dataset
data = pd.read_csv('data.csv')
X = data.drop('target', axis=1)
y = data['target']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)
# Make predictions on the test set
predictions = model.predict(X_test)
# Calculate the accuracy of the model
accuracy = accuracy_score(y_test, predictions)
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️ ♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️
♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️♾️