Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

fduxuan/SDM-Attack

Repository files navigation

IIMDB

  1. train python3 rl_classification.py --mode train --dataset_path imdb --num_labels 2 --target_model_path textattack/bert-base-uncased-imdb --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_json imdb_train.json --discriminator_checkpoint imdb_checkpoint_2

    eval

    python3 attack_classification.py --mode eval --dataset_path data/imdb --num_labels 2 --target_model_path textattack/bert-base-uncased-imdb --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_json imdb_eval_withsecond.json --discriminator_checkpoint Bert-Victim/imdb_checkpoint --sim_score_threshold 0.5

1000/1000 [55:07<00:00, 3.31s/it, acc=0.027, perturb=0.0648, attack_rate=0.97] acc: 0.027 perturb: 0.06479286169373857 attack_rate: 0.9703947368421053

checkpoint2

1000/1000 [42:15<00:00, 2.54s/it, acc=0.023, perturb=0.06, attack_rate=0.975] acc: 0.023 perturb: 0.060047275255877774 attack_rate: 0.9747807017543859

[41:29<00:00, 2.49s/it, acc=0.008, perturb=0.0435, attack_rate=0.991] acc: 0.008 perturb: 0.04347821279749607 attack_rate: 0.9912280701754386

USE:

python3 USE.py --result_path adv_results/imdb_eval.json

Yelp

train

python3 rl_classification.py --mode train --dataset_path yelp_polarity --num_labels 2 --target_model_path textattack/bert-base-uncased-yelp-polarity --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_json yelp_train.json --discriminator_checkpoint Bert-Victim/yelp_checkpoint --sim_score_threshold 0.7

eval

python3 attack_classification.py --mode eval --dataset_path data/yelp --num_labels 2 --target_model_path textattack/bert-base-uncased-yelp-polarity --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_json yelp_eval.json --discriminator_checkpoint Bert-Victim/yelp_checkpoint --sim_score_threshold 0.5

[1:06:26<00:00, 3.99s/it, acc=0.018, perturb=0.0771, attack_rate=0.981]

acc: 0.018 perturb: 0.07706129458641162 attack_rate: 0.9814814814814815

acc: 0.024 perturb: 0.07870804957898324 attack_rate: 0.9753086419753086

USE
python3 USE.py --result_path adv_results/yelp_eval.json

~/acl_code/Text-Attack/Yelp/test.json

train 特殊的

python3 attack_classification.py --mode train --dataset_path yelp_polarity --num_labels 2 --target_model_path Victim-TextFooler/yelp --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_json yelp_train.json --discriminator_checkpoint Bert-Victim/yelp_checkpoint_2 --sim_score_threshold 0.5

python3 attack_classification.py --mode eval --dataset_path data/yelp --num_labels 2 --target_model_path textattack/bert-base-uncased-yelp-polarity --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_json yelp_eval.json --discriminator_checkpoint Bert-Victim/yelp_checkpoint_2 --sim_score_threshold 0.5


WordCnn

1.mr

train

python3 attack_classification.py --mode train --dataset_path data/mr --num_labels 2 --target_model_mode CNN --target_model_path WordCnn/mr --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordCNN --output_json mr_train.json --discriminator_checkpoint discriminator_checkpoint/WordCNN/mr --sim_score_threshold 0.7

eval

python3 attack_classification.py --mode eval --dataset_path data/mr --num_labels 2 --target_model_mode CNN --target_model_path WordCnn/mr --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordCNN --output_json mr_eval.json --discriminator_checkpoint discriminator_checkpoint/WordCNN/mr --sim_score_threshold 0.5

imdb

python3 attack_classification.py --mode train --dataset_path imdb --num_labels 2 --target_model_mode CNN --target_model_path WordCnn/imdb --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordCNN --output_json imdb_train.json --discriminator_checkpoint discriminator_checkpoint/WordCNN/imdb --sim_score_threshold 0.7

python3 attack_classification.py --mode eval --dataset_path data/imdb --num_labels 2 --target_model_mode CNN --target_model_path WordCnn/imdb --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordCNN --output_json imdb_eval.json --discriminator_checkpoint discriminator_checkpoint/WordCNN/imdb --sim_score_threshold 0.5


WordLSTM

1.mr

train

python3 attack_classification.py --mode train --dataset_path rotten_tomatoes --num_labels 2 --target_model_mode LSTM --target_model_path WordLSTM/mr --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordLSTM --output_json mr_train.json --discriminator_checkpoint discriminator_checkpoint/WordLSTM/mr --sim_score_threshold 0.7

eval

python3 attack_classification.py --mode eval --dataset_path data/mr --num_labels 2 --target_model_mode LSTM --target_model_path WordLSTM/mr --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordLSTM --output_json mr_eval.json --discriminator_checkpoint discriminator_checkpoint/WordLSTM/mr --sim_score_threshold 0.5

  1. imdb train

python3 attack_classification.py --mode train --dataset_path rotten_tomatoes --num_labels 2 --target_model_mode LSTM --target_model_path WordLSTM/imdb --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordLSTM --output_json imdb_train.json --discriminator_checkpoint discriminator_checkpoint/WordLSTM/imdb --sim_score_threshold 0.7

python3 attack_classification.py --mode eval --dataset_path data/imdb --num_labels 2 --target_model_mode LSTM --target_model_path WordLSTM/imdb --word_embeddings_path WordCnn/glove.6B.200d.txt --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results/WordLSTM --output_json imdb_eval.json --discriminator_checkpoint discriminator_checkpoint/WordLSTM/imdb --sim_score_threshold 0.5


SNLI

python3 attack_nli.py --mode train --dataset_path data/snli --num_labels 3 --target_model_path textattack/bert-base-uncased-snli --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json snli_hypotheses.json --discriminator_checkpoint discriminator_checkpoint_nli/snil_hypothese --sim_score_threshold 0.5

python3 attack_nli.py --mode eval --dataset_path data/snli --num_labels 3 --target_model_path textattack/bert-base-uncased-snli --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json snli_hypotheses_eval.json --discriminator_checkpoint discriminator_checkpoint_nli/snil_hypothese --sim_score_threshold 0.5 --perturb_ratio 1

snli premises

python3 attack_nli.py --mode eval --dataset_path data/snli --num_labels 3 --target_model_path textattack/bert-base-uncased-snli --target_component premises --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json snli_premises_eval.json --discriminator_checkpoint discriminator_checkpoint_nli/snli_premises --sim_score_threshold 0.5 --perturb_ratio 0.5

mnli-matched hypothese

python3 attack_nli.py --mode train --dataset_path data/mnli_matched --num_labels 3 --target_model_path textattack/bert-base-uncased-MNLI --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json mnli_match_hypotheses_train.json --discriminator_checkpoint discriminator_checkpoint_nli/mnli_hypothese

python3 attack_nli.py --mode eval --dataset_path data/mnli_matched --num_labels 3 --target_model_path textattack/bert-base-uncased-MNLI --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json mnli_match_hypotheses_eval.json --discriminator_checkpoint discriminator_checkpoint_nli/mnli_hypothese --sim_score_threshold 0.5

mnli-mismatched hypothese

python3 attack_nli.py --mode train --dataset_path data/mnli_mismatched --num_labels 3 --target_model_path textattack/bert-base-uncased-MNLI --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json mnli_mismatch_hypotheses_eval.json --discriminator_checkpoint discriminator_checkpoint_nli/snil_hypothese --sim_score_threshold 0.5 --perturb_ratio 1

python3 attack_nli.py --mode eval --dataset_path data/mnli_mismatched --num_labels 3 --target_model_path textattack/bert-base-uncased-MNLI --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --output_dir adv_results --output_json mnli_mismatch_hypotheses_eval.json --discriminator_checkpoint discriminator_checkpoint_nli/snil_hypothese --sim_score_threshold 0.5 --perturb_ratio 1


SNLI hypotheses infersent

python3 attack_nli.py --mode eval --dataset_path data/snli --num_labels 3 --target_model_mode InferSent --target_model_path Victim-TextFooler/SNLI/pytorch_model.bin --target_component hypotheses --counter_fitting_embeddings_path data/counter-fitted-vectors.txt --counter_fitting_cos_sim_path data/cos_sim_counter_fitting.npy --word_embeddings_path Victim-TextFooler/glove.840B.300d.txt --output_dir adv_results/InferSent --output_json snli_hypotheses_eval.json --discriminator_checkpoint discriminator_checkpoint_nli/snil_hypothese --sim_score_threshold 0.5 --perturb_ratio 1


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /