Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

dumplingman0403/ECG-GAN

Repository files navigation

Synthesis ECG signals via Generative adversarial networks

Setup

pip install -r requirement.txt

Usage

download dataset

  • option 1
sh download.sh

if you haven't install unzip, install unzip package first before run download.sh
install guildline:
General - for Linux
Homebrew - for MacOS

Process ECG signals

run following command

python3 process_ecg.py

if you change the dataset path, modify process_ecg.py

# modify dataset path if necessary
AA_DATASET_DIR = 'AA_dataset/' # MIT-BIH Arrhythmia Database
 
AF_DATASET_DIR = 'AF_dataset/' # AF Classification from a Short Single Lead ECG Recording - The PhysioNet Computing in Cardiology Challenge 2017
LABEL_PATH = 'AF_dataset/REFERENCE-original.csv'

GAN Training

training ECG signal with GAN model

python3 train.py

modify the input dataset path in train.py if you change the path of X_train_af.pkl and y_af.pkl

X_train = pickle.load(open("path_of_X_train_af.pkl", "rb")) # --> load AF dataset
y = pickle.load(open("path_of_y_af.pkl", 'rb'))

Output

MIT-BIH Arrhythmia Database

aa_e4000_7.png aa_e4000_16.png aa_e4000_11.png aa_e4000_19.png aa_e4000_40.png aa_e5000_12.png aa_e5000_26.png aa_e7000_44.png aa_e8000_33.png aa_e10000_51.png aa_e10000_89.png

Short Single Lead ECG Recording

Atrial Fibrillation

real
af_real_3.png af_real_4.png af_real_6.png
epoch 1000
afaf_e1000_3.png afaf_e1000_4.png afaf_e1000_6.png
epoch 2000
afaf_e2000_6.png afaf_e2000_8.png afaf_e2000_14.png

About

Synthesize plausible ECG signals via Generative adversarial networks

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /