Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

dropdust/angel

Repository files navigation

license Release Version PRs Welcome

(English Documents Available)

Angel是一个基于参数服务器(Parameter Server)理念开发的高性能分布式机器学习和图计算平台,它基于腾讯内部的海量数据进行了反复的调优,并具有广泛的适用性和稳定性,模型维度越高,优势越明显。 Angel由腾讯和北京大学联合开发,兼顾了工业界的高可用性和学术界的创新性。

Angel的核心设计理念围绕模型。它将高维度的大模型合理切分到多个参数服务器节点,并通过高效的模型更新接口和运算函数,以及灵活的同步协议,轻松实现各种高效的机器学习和图算法。

Angel基于JavaScala开发,能在社区的Yarn上直接调度运行,并基于PS Service,支持Spark on Angel,集成了图计算和深度学习算法。

欢迎对机器学习、图计算有兴趣的同仁一起贡献代码,提交Issues或者Pull Requests。请先查阅: Angel Contribution Guide

Overview

Design

Programming Guide

Deep Learning Architexture

Quick Start

Algorithm

Deployment

Community

FAQ

Support

  • QQ群:20171688

  • 微信答疑群:(加微信小助手,备注Angel答疑)

Papers

  1. Lele Yu, Bin Cui, Ce Zhang, Yingxia Shao. LDA*: A Robust and Large-scale Topic Modeling System. VLDB, 2017
  2. Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu. Heterogeneity-aware Distributed Parameter Servers. SIGMOD, 2017
  3. Jie Jiang, Lele Yu, Jiawei Jiang, Yuhong Liu and Bin Cui. Angel: a new large-scale machine learning system. National Science Review (NSR), 2017
  4. Jie Jiang, Jiawei Jiang, Bin Cui and Ce Zhang. TencentBoost: A Gradient Boosting Tree System with Parameter Server. ICDE, 2017
  5. Jiawei Jiang, Bin Cui, Ce Zhang and Fangcheng Fu. DimBoost: Boosting Gradient Boosting Decision Tree to Higher Dimensions. SIGMOD, 2018.
  6. Jiawei Jiang, Pin Xiao, Lele Yu, Xiaosen Li.PSGraph: How Tencent trains extremely large-scale graphs with Spark?.ICDE, 2020.

Presentation

  1. Angel: A Machine Learning Framework for High Dimensionality. Strata China, 2017

  2. 方圆并济:基于 Spark on Angel 的高性能机器学习. QCon ShangHai China, 2017

  3. 基于Angel和Spark Streaming的高维度Online Learning. GIAC China, 2017

About

A Flexible and Powerful Parameter Server for large-scale machine learning

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 78.5%
  • Scala 19.0%
  • Perl 2.4%
  • Shell 0.1%
  • Jupyter Notebook 0.0%
  • CSS 0.0%

AltStyle によって変換されたページ (->オリジナル) /