Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

dotvignesh/light-tokenizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

7 Commits

Repository files navigation

light-tokenizer

A parallelized BPE tokenizer built from scratch as part of Stanford's CS336 assignment.

No HuggingFace. No SentencePiece. Just raw Python and a lot of profiling.

What's here

  • train.py - BPE training with multiprocessing for pre-tokenization
  • tokenizer.py - CLI for BPE encoding and decoding
  • trained-tokenizers/ - Trained vocabulary and merge files for TinyStories (10K) and OpenWebText (32K)

Quick start

# Train a tokenizer
python train.py --input sample-data/TinyStoriesV2-GPT4-valid.txt --vocab-size 10000
# Encode text
python tokenizer.py --encode "Hello world" --vocab trained-tokenizers/TinyStories/vocab.json --merges trained-tokenizers/TinyStories/merges.txt
# Decode tokens
python tokenizer.py --decode "15496 995" --vocab trained-tokenizers/TinyStories/vocab.json --merges trained-tokenizers/TinyStories/merges.txt

Performance

Profiled with Scalene.

Compression Ratios

Evaluated on validation sets:

  • OpenWebText (32K vocab): 4.37
  • TinyStories (10K vocab): 4.12

Blog post

Wrote about the whole process here: Building a BPE Tokenizer from Scratch

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /