欢迎加入专注于财经数据和量化投资的知识社区,获取《AKShare-财经数据宝典》,其汇集了财经数据的使用经验和指南,还独家分享了 众多国内外财经数据源的使用和注意事项,请点击了解更多 。
量化投研视频课程:《PyBroker-入门及实战》已经上架!《PyBroker-进阶及实战》正在更新!
更多视频教程已经发布:《AKShare-初阶-使用教学》、《AKShare-初阶-实战应用》、《AKShare-源码解析》、《开源项目巡礼》, 详情请关注【数据科学实战】公众号,查看更多课程信息!
广告推广:期魔方是一款非常专业本地化期货量化终端,无需部署或搭建环境,可直接调用及时和历史数据做回测实盘, 支持开箱即用的机器学习训练,策略投研、回测均免费,详情请访问期魔方官网。
PyPI - Python Version PyPI Downloads Documentation Status Ruff akshare Actions Status MIT Licence code style: prettier
AKShare requires Python(64 bit) 3.8 or higher and aims to simplify the process of fetching financial data.
Write less, get more!
- Documentation: 中文文档
pip install akshare --upgrade
pip install akshare -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com --upgrade
Please check out Documentation if you want to contribute to AKShare
docker pull registry.cn-shanghai.aliyuncs.com/akfamily/aktools:jupyter
docker run -it registry.cn-shanghai.aliyuncs.com/akfamily/aktools:jupyter python
import akshare as ak print(ak.__version__)
Code:
import akshare as ak stock_zh_a_hist_df = ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20170301", end_date='20231022', adjust="") print(stock_zh_a_hist_df)
Output:
日期 开盘 收盘 最高 ... 振幅 涨跌幅 涨跌额 换手率
0 2017年03月01日 9.49 9.49 9.55 ... 0.84 0.11 0.01 0.21
1 2017年03月02日 9.51 9.43 9.54 ... 1.26 -0.63 -0.06 0.24
2 2017年03月03日 9.41 9.40 9.43 ... 0.74 -0.32 -0.03 0.20
3 2017年03月06日 9.40 9.45 9.46 ... 0.74 0.53 0.05 0.24
4 2017年03月07日 9.44 9.45 9.46 ... 0.63 0.00 0.00 0.17
... ... ... ... ... ... ... ... ...
1610 2023年10月16日 11.00 11.01 11.03 ... 0.73 0.09 0.01 0.26
1611 2023年10月17日 11.01 11.02 11.05 ... 0.82 0.09 0.01 0.25
1612 2023年10月18日 10.99 10.95 11.02 ... 1.00 -0.64 -0.07 0.34
1613 2023年10月19日 10.91 10.60 10.92 ... 3.01 -3.20 -0.35 0.61
1614 2023年10月20日 10.55 10.60 10.67 ... 1.51 0.00 0.00 0.27
[1615 rows x 11 columns]
Code:
import akshare as ak import mplfinance as mpf # Please install mplfinance as follows: pip install mplfinance stock_us_daily_df = ak.stock_us_daily(symbol="AAPL", adjust="qfq") stock_us_daily_df = stock_us_daily_df.set_index(["date"]) stock_us_daily_df = stock_us_daily_df["2020-04-01": "2020-04-29"] mpf.plot(stock_us_daily_df, type="candle", mav=(3, 6, 9), volume=True, show_nontrading=False)
Output:
Welcome to join the 数据科学实战 knowledge planet to learn more about quantitative investment, please visit 数据科学实战 for more information:
Pay attention to 数据科学实战 WeChat Official Accounts to get the AKShare updated info:
- Easy of use: Just one line code to fetch the data;
- Extensible: Easy to customize your own code with other application;
- Powerful: Python ecosystem.
AKShare is still under developing, feel free to open issues and pull requests:
- Report or fix bugs
- Require or publish interface
- Write or fix documentation
- Add test cases
Notice: We use Ruff to format the code
- All data provided by AKShare is just for academic research purpose;
- The data provided by AKShare is for reference only and does not constitute any investment proposal;
- Any investor based on AKShare research should pay more attention to data risk;
- AKShare will insist on providing open-source financial data;
- Based on some uncontrollable factors, some data interfaces in AKShare may be removed;
- Please follow the relevant open-source protocol used by AKShare;
- Provide HTTP API for the person who uses other program language: AKTools.
Use the badge in your project's README.md:
[](https://github.com/akfamily/akshare)
Using the badge in README.rst:
.. image:: https://img.shields.io/badge/Data%20Science-AKShare-green
:target: https://github.com/akfamily/akshare
Looks like this:
Please use this bibtex if you want to cite this repository in your publications:
@misc{akshare, author = {Albert King}, title = {AKShare}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/akfamily/akshare}}, }
Special thanks FuShare for the opportunity of learning from the project;
Special thanks TuShare for the opportunity of learning from the project;
Thanks for the data provided by 生意社网站;
Thanks for the data provided by 中国银行间市场交易商协会网站;
Thanks for the data provided by 99期货网站;
Thanks for the data provided by 中国外汇交易中心暨全国银行间同业拆借中心网站;
Thanks for the data provided by 金十数据网站;
Thanks for the data provided by 和讯财经网站;
Thanks for the data provided by 新浪财经网站;
Thanks for the data provided by DACHENG-XIU 网站;
Thanks for the data provided by 上海证券交易所网站;
Thanks for the data provided by 深证证券交易所网站;
Thanks for the data provided by 北京证券交易所网站;
Thanks for the data provided by 中国金融期货交易所网站;
Thanks for the data provided by 上海期货交易所网站;
Thanks for the data provided by 大连商品交易所网站;
Thanks for the data provided by 郑州商品交易所网站;
Thanks for the data provided by 上海国际能源交易中心网站;
Thanks for the data provided by Timeanddate 网站;
Thanks for the data provided by 河北省空气质量预报信息发布系统网站;
Thanks for the data provided by 南华期货网站;
Thanks for the data provided by Economic Policy Uncertainty 网站;
Thanks for the data provided by 申万指数网站;
Thanks for the data provided by 真气网网站;
Thanks for the data provided by 财富网站;
Thanks for the data provided by 中国证券投资基金业协会网站;
Thanks for the data provided by Expatistan 网站;
Thanks for the data provided by 北京市碳排放权电子交易平台网站;
Thanks for the data provided by 国家金融与发展实验室网站;
Thanks for the data provided by 东方财富网站;
Thanks for the data provided by 义乌小商品指数网站;
Thanks for the data provided by 百度迁徙网站;
Thanks for the data provided by 思知网站;
Thanks for the data provided by Currencyscoop 网站;
Thanks for the data provided by 新加坡交易所网站;
Thanks for the tutorials provided by 微信公众号: Python大咖谈.
JetBrains logo.