Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
/ mnist Public
forked from yhlleo/mnist

Some samples of the MNIST classifier.

Notifications You must be signed in to change notification settings

deleleaf/mnist

Repository files navigation

mnist

Some samples of the MNIST classifier which are corresponding to the tutorials of the jikexueyuan(https://wiki.jikexueyuan.com/project/tensorflow-zh/).

构建模块:

  • input_data.py: MNIST数据集下载与解压
  • mnist.py: Implements the inference/loss/training pattern for model building

代码测试:

  • mnist_softmax.py: MNIST机器学习入门
  • mnist_deep.py: 深入MNIST
  • fully_connected_feed.py: TensorFlow运作方式入门
  • mnist_with_summaries.py: Tensorboard训练过程可视化

将MNIST数据集,下载后拷贝到文件夹Mnist_data中,如果已经配置好tensorflow环境,主要的四个测试代码文件,都可以直接编译运行:

  • mnist_softmax.py: MNIST机器学习入门
  • mnist_deep.py: 深入MNIST
  • fully_connected_feed.py: TensorFlow运作方式入门
  • mnist_with_summaries.py: Tensorboard训练过程可视化

**mnist_softmax.py**运行结果比较简单,就不列举。

**mnist_deep.py**迭代运行较为耗时,结果已显示在博客: 深入MNIST code测试

**fully_connected_feed.py**的运行结果如下(本人电脑为2 CPU,没有使用GPU):

Extracting Mnist_data/train-images-idx3-ubyte.gz
Extracting Mnist_data/train-labels-idx1-ubyte.gz
Extracting Mnist_data/t10k-images-idx3-ubyte.gz
Extracting Mnist_data/t10k-labels-idx1-ubyte.gz
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 2
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 2
Step 0: loss = 2.33 (0.023 sec)
Step 100: loss = 2.09 (0.007 sec)
Step 200: loss = 1.76 (0.009 sec)
Step 300: loss = 1.36 (0.007 sec)
Step 400: loss = 1.12 (0.007 sec)
Step 500: loss = 0.74 (0.008 sec)
Step 600: loss = 0.78 (0.006 sec)
Step 700: loss = 0.69 (0.007 sec)
Step 800: loss = 0.67 (0.007 sec)
Step 900: loss = 0.52 (0.010 sec)
Training Data Eval:
 Num examples: 55000 Num correct: 47532 Precision @ 1: 0.8642
Validation Data Eval:
 Num examples: 5000 Num correct: 4360 Precision @ 1: 0.8720
Test Data Eval:
 Num examples: 10000 Num correct: 8705 Precision @ 1: 0.8705
Step 1000: loss = 0.56 (0.013 sec)
Step 1100: loss = 0.50 (0.145 sec)
Step 1200: loss = 0.33 (0.007 sec)
Step 1300: loss = 0.44 (0.006 sec)
Step 1400: loss = 0.39 (0.006 sec)
Step 1500: loss = 0.33 (0.009 sec)
Step 1600: loss = 0.56 (0.008 sec)
Step 1700: loss = 0.50 (0.007 sec)
Step 1800: loss = 0.42 (0.006 sec)
Step 1900: loss = 0.41 (0.006 sec)
Training Data Eval:
 Num examples: 55000 Num correct: 49220 Precision @ 1: 0.8949
Validation Data Eval:
 Num examples: 5000 Num correct: 4520 Precision @ 1: 0.9040
Test Data Eval:
 Num examples: 10000 Num correct: 9014 Precision @ 1: 0.9014
[Finished in 22.8s]

**mnist_with_summaries.py**主要提供了一种在Tensorboard可视化方法,首先,编译运行代码:

tensorboard

运行完毕后,打开终端Terminal,输入tensorboard --logdir=/tmp/mnist_logs,就会运行出:Starting TensorBoard on port 6006 (You can navigate to https://localhost:6006)

然后,打开浏览器,输入链接https://localhost:6006:

tensorboard2

其中,有一些选项,例如菜单栏里包括EVENTS, IMAGES, GRAPH, HISTOGRAMS,都可以一一点开查看~

另外,此时如果不关闭该终端,是无法在其他终端中重新生成可视化结果的,会出现端口占用的错误,更多详细信息可以查看英文原文:TensorBoard: Visualizing Learning

源自博客: Tensorflow MNIST 数据集测试代码入门

如有纰漏,欢迎指正!

About

Some samples of the MNIST classifier.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%

AltStyle によって変換されたページ (->オリジナル) /