Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

danionella/daio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

78 Commits

Repository files navigation

Python Version License: MIT tests PyPI - Version Conda Version GitHub last commit

daio

Speed-optimized, frame-accurate video and data IO tools for Python.

Links: API documentation, GitHub repository

Features

Video IO

  • Efficient Video Reading: Use VideoReader for fast frame-accurate video reading with support for array-like indexing and iteration.
  • Video Writing: Write video files easily with VideoWriter, supporting multiple codecs and pixel formats.

HDF5 File IO

  • Lazy Loading: Access HDF5 files with a dictionary-like interface using lazyh5, loading data only when accessed.
  • Nested Data Support: Save and load nested dictionaries, including arrays, strings, and JSON-serializable objects.
  • Interactive Exploration: Explore HDF5 file structures interactively in Jupyter notebooks.

Installation

  • via conda or mamba: conda install conda-forge::daio
  • if you prefer pip: pip install daio

Use

Video IO

Write video:

from daio.video import VideoReader, VideoWriter
writer = VideoWriter('/path/to/video.mp4', fps=25)
for i in range(20):
 frame = np.random.randint(0,255,size=(720,1280), dtype='uint8')
 writer.write(frame)
writer.close()

Read video using speed-optimized array-like indexing or iteration:

reader = VideoReader('/path/to/video.mp4')
frame_7 = reader[7]
first10_frames = reader[:10]
for frame in reader:
 process_frame(frame)
reader.close()

You can also use with statements to handle file closure:

with VideoWriter('/path/to/video.mp4', fps=25) as writer:
 for i in range(20):
 frame = np.random.randint(0,255,size=(720,1280), dtype='uint8')
 writer.write(frame)
#or
with VideoReader('/path/to/video.mp4') as reader:
 frame_7 = reader[7]

HDF5 file IO

Lazily load HDF5 with a dict-like interface (contents are only loaded when accessed):

from daio.h5 import lazyh5
h5 = lazyh5('/path/to/datafile.h5')
b_loaded = h5['b']
e_loaded = h5['c']['e']
h5.keys()

Create a new HDF5 file (or add items to existing file by setting argument readonly=False):

h5 = lazyh5('test.h5')
h5['a'] = 1
h5['b'] = 'hello'
h5['c'] = {} # create subgroup
h5['c']['e'] = [2,3,4]

Load entire HDF5-file to dict, or save dict to HDF5-file:

# save dict to HDF5 file:
some_dict = dict(a = 1, b = np.random.randn(3,4,5), c = dict(g='nested'), d = 'some_string')
lazyh5('/path/to/datafile.h5').from_dict(some_dict)
# load dict from HDF5 file:
loaded = lazyh5('/path/to/datafile.h5').to_dict()

In Jupyter, you can interactively explore the file structure:

image
Old interface (expand this)
from daio.h5 import save_to_h5, load_from_h5
# save dict to HDF5 file:
some_dict = dict(a = 1, b = np.random.randn(3,4,5), c = dict(g='nested'), d = 'some_string')
save_to_h5('/path/to/datafile.h5', some_dict)
# load dict from HDF5 file:
dict_loaded = load_from_h5('/path/to/datafile.h5')

AltStyle によって変換されたページ (->オリジナル) /