Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

cvlab-stonybrook/LearningToCountEverything

Repository files navigation

Learning To Count Everything

image

This is the official implementation of the following CVPR 2021 paper:

Learning To Count Everything
Viresh Ranjan, Udbhav Sharma, Thu Nguyen and Minh Hoai
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Link to arxiv preprint: https://arxiv.org/pdf/2104.08391.pdf

Short presentation video

Short Presentation

Dataset download

Images can be downloaded from here: https://drive.google.com/file/d/1ymDYrGs9DSRicfZbSCDiOu0ikGDh5k6S/view?usp=sharing

Precomputed density maps can be found here: https://archive.org/details/FSC147-GT

Place the unzipped image directory and density map directory inside the data directory.

Installation with Conda

conda create -n fscount python=3.7 -y

conda activate fscount

python -m pip install matplotlib opencv-python notebook tqdm

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch

Quick demo

Provide the input image and also provide the bounding boxes of exemplar objects using a text file:

python demo.py --input-image orange.jpg --bbox-file orange_box_ex.txt 

Use our provided interface to specify the bounding boxes for exemplar objects

python demo.py --input-image orange.jpg

Evaluation

We are providing our pretrained FamNet model, and the evaluation code can be used without the training.

Testing on validation split without adaptation

python test.py --data_path /PATH/TO/YOUR/FSC147/DATASET/ --test_split val

Testing on val split with adaptation

python test.py --data_path /PATH/TO/YOUR/FSC147/DATASET/ --test_split val --adapt

Training

python train.py --gpu 0

Citation

If you find the code useful, please cite:

@inproceedings{m_Ranjan-etal-CVPR21,
 author = {Viresh Ranjan and Udbhav Sharma and Thu Nguyen and Minh Hoai},
 title = {Learning To Count Everything},
 year = {2021},
 booktitle = {Proceedings of the {IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /