Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

csfarzin/DVC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

5 Commits

Repository files navigation

DVC

Deep Variational Clustering Framework for Self-labeling Large-scale Medical Images This is the official PyTorch implementation of the DVC paper:

@Article{
}

Requirements

conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

Dataset

  • MNIST
  • Skin Cancer
  • REFUGE-2

Training

To Train DVC run cvae_idec.py

python cvae_idec.py --batch_size 256 --lr 0.001
optional arguments:
--lr Learnig rate
--n_clusters Number of cluster
--n_z Size of embbeding layer
--batch_size Number of images in each mini-batch [default value is 512]
--dataset-name Name of the dataset (e.g., mnist, skin, retina)
--pretrain_path Path of pretrained model (e.g., "saved_models/VAE/cvae_cifar10.pkl")
--early_patience Number of epochs before triggering the early stopping.
--gamma Coefficient of clustering loss
--update_interval Specify the update interval of target distribution

About

Deep Variational Clustering Framework for Self-labeling Large-scale Medical Images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /