Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

cocoindex-io/cocoindex

CocoIndex

Data transformation for AI

Ultra performant data transformation framework for AI, with core engine written in Rust. Support incremental processing and data lineage out-of-box. Exceptional developer velocity. Production-ready at day 0.

⭐ Drop a star to help us grow!


CocoIndex Transformation


CocoIndex makes it effortless to transform data with AI, and keep source data and target in sync. Whether you’re building a vector index for RAG, creating knowledge graphs, or performing any custom data transformations — goes beyond SQL.


CocoIndex Features


Exceptional velocity

Just declare transformation in dataflow with ~100 lines of python

# import
data['content'] = flow_builder.add_source(...)
# transform
data['out'] = data['content']
 .transform(...)
 .transform(...)
# collect data
collector.collect(...)
# export to db, vector db, graph db ...
collector.export(...)

CocoIndex follows the idea of Dataflow programming model. Each transformation creates a new field solely based on input fields, without hidden states and value mutation. All data before/after each transformation is observable, with lineage out of the box.

Particularly, developers don't explicitly mutate data by creating, updating and deleting. They just need to define transformation/formula for a set of source data.

Plug-and-Play Building Blocks

Native builtins for different source, targets and transformations. Standardize interface, make it 1-line code switch between different components - as easy as assembling building blocks.

CocoIndex Features

Data Freshness

CocoIndex keep source data and target in sync effortlessly.

Incremental Processing

It has out-of-box support for incremental indexing:

  • minimal recomputation on source or logic change.
  • (re-)processing necessary portions; reuse cache when possible

Quick Start:

If you're new to CocoIndex, we recommend checking out

Setup

  1. Install CocoIndex Python library
pip install -U cocoindex
  1. Install Postgres if you don't have one. CocoIndex uses it for incremental processing.

Define data flow

Follow Quick Start Guide to define your first indexing flow. An example flow looks like:

@cocoindex.flow_def(name="TextEmbedding")
def text_embedding_flow(flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope):
 # Add a data source to read files from a directory
 data_scope["documents"] = flow_builder.add_source(cocoindex.sources.LocalFile(path="markdown_files"))
 # Add a collector for data to be exported to the vector index
 doc_embeddings = data_scope.add_collector()
 # Transform data of each document
 with data_scope["documents"].row() as doc:
 # Split the document into chunks, put into `chunks` field
 doc["chunks"] = doc["content"].transform(
 cocoindex.functions.SplitRecursively(),
 language="markdown", chunk_size=2000, chunk_overlap=500)
 # Transform data of each chunk
 with doc["chunks"].row() as chunk:
 # Embed the chunk, put into `embedding` field
 chunk["embedding"] = chunk["text"].transform(
 cocoindex.functions.SentenceTransformerEmbed(
 model="sentence-transformers/all-MiniLM-L6-v2"))
 # Collect the chunk into the collector.
 doc_embeddings.collect(filename=doc["filename"], location=chunk["location"],
 text=chunk["text"], embedding=chunk["embedding"])
 # Export collected data to a vector index.
 doc_embeddings.export(
 "doc_embeddings",
 cocoindex.targets.Postgres(),
 primary_key_fields=["filename", "location"],
 vector_indexes=[
 cocoindex.VectorIndexDef(
 field_name="embedding",
 metric=cocoindex.VectorSimilarityMetric.COSINE_SIMILARITY)])

It defines an index flow like this:

Data Flow

🚀 Examples and demo

Example Description
Text Embedding Index text documents with embeddings for semantic search
Code Embedding Index code embeddings for semantic search
PDF Embedding Parse PDF and index text embeddings for semantic search
Manuals LLM Extraction Extract structured information from a manual using LLM
Amazon S3 Embedding Index text documents from Amazon S3
Azure Blob Storage Embedding Index text documents from Azure Blob Storage
Google Drive Text Embedding Index text documents from Google Drive
Docs to Knowledge Graph Extract relationships from Markdown documents and build a knowledge graph
Embeddings to Qdrant Index documents in a Qdrant collection for semantic search
FastAPI Server with Docker Run the semantic search server in a Dockerized FastAPI setup
Product Recommendation Build real-time product recommendations with LLM and graph database
Image Search with Vision API Generates detailed captions for images using a vision model, embeds them, enables live-updating semantic search via FastAPI and served on a React frontend
Face Recognition Recognize faces in images and build embedding index
Paper Metadata Index papers in PDF files, and build metadata tables for each paper
Multi Format Indexing Build visual document index from PDFs and images with ColPali for semantic search
Custom Output Files Convert markdown files to HTML files and save them to a local directory, using CocoIndex Custom Targets
Patient intake form extraction Use LLM to extract structured data from patient intake forms with different formats

More coming and stay tuned 👀!

📖 Documentation

For detailed documentation, visit CocoIndex Documentation, including a Quickstart guide.

🤝 Contributing

We love contributions from our community ❤️. For details on contributing or running the project for development, check out our contributing guide.

👥 Community

Welcome with a huge coconut hug 🥥⋆。 ̊🤗. We are super excited for community contributions of all kinds - whether it's code improvements, documentation updates, issue reports, feature requests, and discussions in our Discord.

Join our community here:

Support us:

We are constantly improving, and more features and examples are coming soon. If you love this project, please drop us a star ⭐ at GitHub repo GitHub to stay tuned and help us grow.

License

CocoIndex is Apache 2.0 licensed.

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /