docs layout detection
_ ____ _ _
/ \ _ __ _ _| _ \ ___ ___| | __ _ _ _ ___ _ _| |_
/ _ \ | '_ \| | | | | | |/ _ \ / __| | / _` | | | |/ _ \| | | | __|
/ ___ \| | | | |_| | |_| | (_) | (__| |__| (_| | |_| | (_) | |_| | |_
/_/ \_\_| |_|\__, |____/ \___/ \___|_____\__,_|\__, |\___/ \__,_|\__|
|___/ |___/
- Github:anydoclayout
- Hugging Face: anydoclayout
- ModelScope: anydoclayout
{0: 'header',
1: 'title',
2: 'text',
3: 'table',
4: 'figure',
5: 'formula',
6: 'footer',
7: 'pagenum'}- train: 841862 (opendata: 667426, selfgen: 174436)
- eval: 5500
- imgsize:1280
Class Images Instances Box(P R) all 5500 52274 0.921 0.897 header 1461 2337 0.92 0.878 title 2308 5473 0.896 0.893 text 4149 34156 0.937 0.927 table 1476 1913 0.946 0.958 figure 1842 3343 0.94 0.94 formula 735 1506 0.881 0.876 footer 745 1157 0.909 0.781 pagenum 2164 2389 0.938 0.919
- email:christnowx@qq.com
from pathlib import Path from ultralytics import YOLO modelfile = Path(model_dir).joinpath('anydoclayout-yolo11s-imgsz1280.pt') model = YOLO(modelfile) res = model.predict('your img file', imgsz = 1280)
- 微信(WeChat)