Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Split any text for LLM or RAG or Agent. - text, semantics, token, markdown, code language, custom, etc.

Notifications You must be signed in to change notification settings

anyforge/anychunker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

9 Commits

Repository files navigation

AnyChunker

Split any text for LLM or RAG or Agent.

  • text, semantics, token, markdown, code language, custom, etc.
 _ ____ _ _
 / \ _ __ _ _ / ___| |__ _ _ _ __ | | _____ _ __
 / _ \ | '_ \| | | | | | '_ \| | | | '_ \| |/ / _ \ '__|
 / ___ \| | | | |_| | |___| | | | |_| | | | | < __/ |
/_/ \_\_| |_|\__, |\____|_| |_|\__,_|_| |_|_|\_\___|_|
 |___/

install

pip install .
or
pip install -e .

1. recursive split text

from anychunker.text import AnyTextChunker
text = """
# 1111
## 1111.22
dsdsdsds

## 1.4 dsdsdd
dajajfsdfds
###### dsdsdsd
"""

by regex split

## by regex split
model1 = AnyTextChunker(chunk_size = 50, chunk_overlap = 0)
model1.invoke(text)
 Document(metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 15, 1, 59, 827280), name='default', topic='default', tag='default', length=70), chunks=[Chunker(metadata={}, chunk_id=0, chunk_size=26, start_pos=1, end_pos=27, content='# 1111\n## 1111.22\ndsdsdsds'), Chunker(metadata={}, chunk_id=1, chunk_size=40, start_pos=29, end_pos=69, content='## 1.4 dsdsdd\ndajajfsdfds\n###### dsdsdsd')])

auto batch doc

for x in model1.invoke(text).batchIterator(batch_size = 1):
 print(x,'\n\n')
 ChunkBatcher(batch_index=0, batch_size=1, chunks=[Chunker(metadata={}, chunk_id=0, chunk_size=26, start_pos=1, end_pos=27, content='# 1111\n## 1111.22\ndsdsdsds')], metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 15, 2, 2, 861414), name='default', topic='default', tag='default', length=70), actual_size=1, total_content_length=26, start_chunk_id=0, end_chunk_id=0) 
 
 
 ChunkBatcher(batch_index=1, batch_size=1, chunks=[Chunker(metadata={}, chunk_id=1, chunk_size=40, start_pos=29, end_pos=69, content='## 1.4 dsdsdd\ndajajfsdfds\n###### dsdsdsd')], metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 15, 2, 2, 861414), name='default', topic='default', tag='default', length=70), actual_size=1, total_content_length=40, start_chunk_id=1, end_chunk_id=1) 

by transformer tokenizer

## by transformer tokenizer
model2 = AnyTextChunker.from_tokenizer("Qwen/Qwen3-8B",chunk_size = 50, chunk_overlap = 0)
model2.invoke(text)
 Document(metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 14, 57, 45, 431157), name='default', topic='default', tag='default', length=45), chunks=[Chunker(metadata={}, chunk_id=0, chunk_size=43, start_pos=1, end_pos=44, content='# 1111\n## 1111.22\ndsdsdsds\n\n## 1.4 dsdsdd\ndajajfsdfds\n###### dsdsdsd')])

by any tokenizer

import jieba
def _tokenizer_length(text: str) -> int:
 return len(jieba.lcut(text))
model1 = AnyTextChunker(chunk_size = 50, chunk_overlap = 0, length_function = _tokenizer_length,)
model1.invoke(text)

by language

## by language
from anychunker.base import Language
model3 = AnyTextChunker.from_language(Language.MARKDOWN,chunk_size = 50, chunk_overlap = 0)
model3.invoke(text)
 Document(metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 14, 59, 4, 222919), name='default', topic='default', tag='default', length=70), chunks=[Chunker(metadata={}, chunk_id=0, chunk_size=26, start_pos=1, end_pos=27, content='# 1111\n## 1111.22\ndsdsdsds'), Chunker(metadata={}, chunk_id=1, chunk_size=40, start_pos=29, end_pos=69, content='## 1.4 dsdsdd\ndajajfsdfds\n###### dsdsdsd')])

2. super markdown header split

from anychunker.markdown import AnyMarkdownChunker
text = """
# 1111
## 1111.22
dsdsdsds

## 1.4 dsdsdd
dajajfsdfds
###### dsdsdsd
"""
model4 = AnyMarkdownChunker([('#','header1'),('##','Header2')])
model4.invoke(text)
 Document(metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 15, 2, 55, 76103), name='default', topic='default', tag='default', length=70), chunks=[Chunker(metadata={'header1': '1111', 'Header2': '1111.22'}, chunk_id=0, chunk_size=8, start_pos=19, end_pos=27, content='dsdsdsds'), Chunker(metadata={'header1': '1111', 'Header2': '1.4 dsdsdd'}, chunk_id=1, chunk_size=26, start_pos=43, end_pos=69, content='dajajfsdfds\n###### dsdsdsd')])

3. Semantics text split

from anychunker.semantics import AnySemanticsChunker
from sentence_transformers import SentenceTransformer
# Load the model
model_dir = "Qwen/Qwen3-Embedding-0.6B"
model = SentenceTransformer(model_dir)
def emb_model(sentences):
 return model.encode(sentences).tolist()
model5 = AnySemanticsChunker(embedding_model = emb_model)
text = """
# 1111
## 1111.22
dsdsdsds.

## 1.4 dsdsdd
dajajfsdfds.
###### dsdsdsd
"""
model5.invoke(text)
Document(metadata=DocumentMetadata(created=datetime.datetime(2025, 7, 22, 16, 9, 12, 397166), name='default', topic='default', tag='default', length=72), chunks=[Chunker(metadata={}, chunk_id=0, chunk_size=17, start_pos=1, end_pos=18, content='# 1111\n## 1111.22'), Chunker(metadata={}, chunk_id=1, chunk_size=51, start_pos=-1, end_pos=50, content='dsdsdsds.\n## 1.4 dsdsdd\ndajajfsdfds.\n###### dsdsdsd')])
# see all functions
docs = model5.invoke(text)
dir(docs)

About

Split any text for LLM or RAG or Agent. - text, semantics, token, markdown, code language, custom, etc.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /