Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

albertms10/music_notes

Analysis CI Coverage Status pub package OpenSSF Scorecard OpenSSF Best Practices License style: very good analysis

A comprehensive Dart library for effortlessly working with music theory concepts, offering an elegant and beautifully crafted API.

Features

  • Notes, accidentals, and enharmonic operations
  • Intervals, qualities, and circle of fifths
  • Chords, scales, harmonic functions, inversions and retrogrades
  • Keys, key signatures, and modes
  • Frequencies and tuning systems (work in progress)

Usage

Import the package into your Dart code:

import 'package:music_notes/music_notes.dart';

Now, you can use the provided APIs to perform various music theory operations. For more detailed usage instructions and examples, please refer to the API documentation.

Notes

Define a Note from a NoteName (.a to .g) and an Accidental, or using their shorthand static constants:

const Note(.e, .flat); // E♭
Note.c; // C
Note.d; // D
Note.f; // F

NoteNames can be obtained from semitones or ordinal:

NoteName.fromSemitones(2); // NoteName.d
NoteName.fromSemitones(9); // NoteName.a
NoteName.fromOrdinal(3); // NoteName.e
NoteName.fromOrdinal(7); // NoteName.b

Alter a Note with sharp or flat:

Note.c.sharp; // C♯
Note.d.flat; // D♭
Note.g.flat.flat; // G𝄫
Note.f.sharp.sharp.sharp; // F𝄪♯

And position them in the octave, resulting in Pitches:

Note.f.inOctave(4); // F4
Note.b.flat.inOctave(5); // B♭5

Or parse them in both scientific and Helmholtz notations:

NoteName.parse('b'); // NoteName.b
Note.parse('a#'); // A♯
Pitch.parse("g''"); // G5
Pitch.parse('Eb3'); // E♭3

Get their difference in semitones:

NoteName.c.difference(.e); // 4
NoteName.a.difference(.e); // -5
NoteName.a.positiveDifference(.e); // 7
Note.c.difference(.e.flat); // 3
Pitch.parse('C').difference(.parse("c''''")); // 60

Transpose them:

Note.g.flat.transposeBy(-Interval.m3); // E♭
Note.b.inOctave(3).transposeBy(.P5); // F♯4

Respell them by any criteria:

Note.c.sharp.respellByNoteName(.d); // D♭
Note.e.flat.respellByAccidental(.sharp); // D♯
Note.g.flat.inOctave(3).respellByOrdinalDistance(-1); // F♯3
Note.g.sharp.respelledUpwards; // A♭
Note.a.flat.respelledDownwards; // G♯
Note.b.sharp.inOctave(4).respelledSimple; // C5

Compare two Pitches based on their semitones:

Note.c.inOctave(4) < Note.c.inOctave(5); // true
Note.d.inOctave(3) > Note.f.inOctave(4); // false
Note.a.flat.inOctave(5) >= Note.g.sharp.inOctave(5); // true

Know whether two Notes or Pitches are enharmonically equivalent:

Note.f.sharp.isEnharmonicWith(Note.g.flat); // true
Note.c.inOctave(4).isEnharmonicWith(Note.b.sharp.inOctave(3)); // true
Note.a.isEnharmonicWith(Note.b.flat); // false

Represent them as PitchClasses:

Note.d.flat.toClass(); // {C♯|D♭}
Note.a.inOctave(4).toClass(); // {A}

Perform PitchClass multiplications (modulo 12):

PitchClass.cSharp * 7; // {G}
PitchClass.d * 7; // {D}
// observe one semitone upwards results in ascending fifths G -> D.
PitchClass.cSharp * 5; // {F}
PitchClass.d * 5; // {A♯|B♭}
// observe one semitone upwards results in ascending fourths F -> B-flat.

Represent them using any notation formatter:

Note.d.flat
 ..toString() // D♭
 ..toString(formatter: const GermanNoteNotation()) // Des
 ..toString(formatter: const RomanceNoteNotation.symbol()); // Re♭
Note.b.flat.inOctave(-1).toString(); // B♭-1
Note.c.inOctave(6).toString(formatter: HelmholtzPitchNotation.english); // c′′′
PitchClass.c.toString(); // {C}
PitchClass.dSharp.toString(); // {D♯|E♭}
PitchClass.f.toString(formatter: const IntegerPitchClassNotation()); // 5
PitchClass.aSharp.toString(formatter: const IntegerPitchClassNotation()); // t

Intervals

Create an Interval:

const Interval.imperfect(.tenth, .major); // M10
Interval.d5; // d5
Size.sixth.augmented; // A6
Size.eleventh.simple.perfect; // P4

Or parse it from a string:

Interval.parse('m3'); // m3
Interval.parse('P-5'); // P-5
Interval.parse('AA6'); // AA6

Turn it descending:

-Interval.m7; // m-7
Interval.M3.descending(); // M-3
(-Interval.P4).descending(false); // P4

Perform common interval operations:

Interval.m3.inversion; // M6
Interval.A4.inversion; // d5
Interval.m9.inversion; // M7
Interval.m9.simple; // m2
Interval.P11.simple; // P4
(-Interval.M3).simple; // M-3
Interval.P5.isCompound; // false
Interval.M9.isCompound; // true
(-Interval.P11).isCompound; // true
Interval.P5.isDissonant; // false
Interval.d5.isDissonant; // true
Interval.M7.isDissonant; // true

Respell an Interval by size:

Interval.A4.respellBySize(.fifth); // d5
Interval.d3.respellBySize(.second); // M2

Calculate the Interval between two notes:

Note.c.interval(.g); // P5
Note.d.interval(.f.sharp).inversion; // m6
NoteName.d.intervalSize(.f); // 3
NoteName.a.intervalSize(.e); // 5

Know the intervallic distance between two notes:

Interval.P5.circleDistance<Note>(from: .c, to: .d);
// (2, notes: [C, G, D])
Interval.P4.circleDistance<Note>(from: .b.flat, to: .d);
// (-4, notes: [B♭, F, D, G, D])

And even explore the circle of fifths or any circle of intervals up to a distance:

Interval.P5.circleFrom(Note.c).take(13).toList();
// [C, G, D, A, E, B, F♯, C♯, G♯, D♯, A♯, E♯, B♯]
Note.c.circleOfFifths(distance: 3); // [E♭, B♭, F, C, G, D, A]
Note.c.splitCircleOfFifths.down.take(6).toList();
// [F, B♭, E♭, A♭, D♭, G♭]
Note.c.splitCircleOfFifths.up.take(8).toList();
// [G, D, A, E, B, F♯, C♯, G♯]
Note.d.circleOfFifthsDistance; // 2
Note.a.flat.circleOfFifthsDistance; // -4
Note.c.fifthsDistanceWith(.e.flat); // -3
Note.b.fifthsDistanceWith(.f.sharp); // 1

Know whether two Intervals are enharmonically equivalent:

Interval.M3.isEnharmonicWith(Interval.d4); // true
Interval.A4.isEnharmonicWith(Interval.d5); // true
Interval.P1.isEnharmonicWith(Interval.m2); // false

Represent them as IntervalClasses:

Interval.M2.toClass(); // {M2|d3}
Interval.m6.toClass(); // {M3|d4}
Interval.P8.toClass(); // {P1}

Compare two Intervals based on their semitones:

Interval.m3 < .P5; // true
Interval.m7 <= .P5; // false
-Interval.P4 > .M3; // true

Add, subtract and multiply Intervals and IntervalClasses:

Interval.m2 + .M2; // m3
Interval.M2 + .P4; // P5
IntervalClass.tritone + .M2; // {M3|d4}
IntervalClass.M3 + .P4; // {m3}
IntervalClass.P4 - .m3; // {M2|d3}
IntervalClass.P4 * -1; // {P4}
IntervalClass.M2 * 0; // {P1}
IntervalClass.m3 * 2; // {A4|d5}

Represent them as a string:

Interval.m2.toString(); // m2
Interval.A6.toString(); // A6
IntervalClass.M2.toString(); // {M2|d3}
IntervalClass.P4.toString(); // {P4}
IntervalClass.tritone.toString(); // {A4|d5}

Keys

Create a Key or get it from a given Note:

const Key(.e, .minor); // E minor
Note.a.flat.major; // A♭ major

Know its KeySignature:

Note.d.major.signature; // {D major, B minor} +2 fifths (F♯ C♯)
Note.e.flat.minor.signature;
// {G♭ major, E♭ minor} −6 fifths (B♭ E♭ A♭ D♭ G♭ C♭)

Whether it is theoretical:

Note.e.major.isTheoretical; // false
Note.a.flat.minor.isTheoretical; // true

And its relative and parallel Keys:

Note.d.major.relative; // B minor
Note.c.minor.relative; // E♭ major
Note.f.minor.parallel; // F major
Note.c.sharp.major.parallel; // C♯ minor

Represent it using any notation formatter:

Note.d.flat.major.toString(); // D♭ major
Note.c.major.toString(formatter: const RomanceKeyNotation()); // Do maggiore
Note.e.flat.minor.toString(formatter: const GermanKeyNotation()); // es-moll

Key signatures

Create a KeySignature:

KeySignature.fromDistance(4); // {E major, C♯ minor} +4 fifths (F♯ C♯ G♯ D♯)
KeySignature([.b.flat, .e.flat]); // {B♭ major, G minor} −2 fifths (B♭ E♭)
KeySignature([.g.sharp, .a.sharp]); // Non-canonical (G♯ A♯)

Increment them by sharps or flats:

KeySignature.fromDistance(-4).incrementBy(-1);
// {E♭ major, C minor} −3 fifths (B♭ E♭ A♭)
KeySignature([.f.sharp, .c.sharp]).incrementBy(3);
// {B major, G♯ minor} +5 fifths (F♯ C♯ G♯ D♯ A♯)

And know its Keys:

KeySignature([.f.sharp]).keys[TonalMode.major]; // G major
KeySignature.empty.keys[TonalMode.minor]; // A minor

Non-canonical key signatures are also supported, although they return null when asked about their fifths distance or keys:

KeySignature([.a.flat])
 ..isCanonical // false
 ..distance // null
 ..keys; // <TonalMode, Key>{}

Modes

Get each Mode’s ScalePattern:

TonalMode.minor.scale; // ScalePattern.minor
ModalMode.locrian.scale; // ScalePattern.locrian

Their Dorian Brightness Quotient:

ModalMode.lydian.brightness; // 3
ModalMode.dorian.brightness; // 0
ModalMode.aeolian.brightness; // -1

Or its mirrored version:

ModalMode.ionian.mirrored; // ModalMode.phrygian
ModalMode.aeolian.mirrored; // ModalMode.mixolydian

Scales

Create a Scale from a ScalePattern:

ScalePattern.lydian.on(Note.d); // D Lydian (D E F♯ G♯ A B C♯ D)
ScalePattern.wholeTone.on(Note.f); // F Whole-tone (F G A B C♯ D♯ F)
ScalePattern.majorPentatonic.on(Note.g.flat);
// G♭ Major pentatonic (G♭ A♭ B♭ D♭ E♭ G♭)

Or get it from a Key:

Note.a.flat.major.scale; // A♭ Major (ionian) (A♭ B♭ C D♭ E♭ F G A♭)
Note.d.minor.scale; // D Natural minor (aeolian) (D E F G A B♭ C D)

Even experiment with any ScaleDegree or HarmonicFunction:

ScalePattern.lydian.on(Note.e).degree(.iv); // A♯
Note.c.major.scale.functionChord(
 HarmonicFunction.dominantV / .dominantV,
); // D

Rearrange any collection of Notes, Pitches or PitchClasses as inversion or retrograde:

<Note>{.b, .a.sharp, .d}.inversion.toSet(); // {B, C, G♯}
<PitchClass>{.dSharp, .g, .fSharp}.retrograde.toSet();
// {{F♯|G♭}, {G}, {D♯|E♭}}

Or know its numeric representation:

<PitchClass>{.b, .aSharp, .d, .e}
 ..numericRepresentation()
 .toSet() // {0, 11, 3, 5}
 ..numericRepresentation(reference: .d)
 .toSet() // {9, 8, 0, 2}
 ..deltaNumericRepresentation.toList(); // [0, -1, 4, 2]

Chords

Create a Chord from a series of Notes or a ChordPattern:

Chord<Note>([.a, .c.sharp, .e]); // A
ChordPattern.augmentedTriad.add11().add13().on(Note.d.sharp); // D♯+11 13

Or build it on top of a Note:

Note.f.minorTriad.add7().add9(.minor);
// F-7 ♭9
Note.e.flat.diminishedTriad.add7().transposeBy(.m2);
// F♭ø

Or modify its root triad:

Note.g.minorTriad.major; // G
Note.f.sharp.majorTriad.add9().diminished; // F♯dim

Frequencies

Get the Frequency of a Pitch:

Note.a.inOctave(4).frequency(); // 440
Note.a.inOctave(4).frequency(temperature: const Celsius(18));
// 438.4619866006409

Create a TuningFork from a Pitch and a reference Frequency, or using its shorthand static constants:

Note.a.inOctave(4).at(const Frequency(438)); // A438
TuningFork.a440; // A440
TuningFork.c256; // C256

And use it in a TuningSystem:

Note.b.flat
 .inOctave(4)
 .frequency(
 tuningSystem: const EqualTemperament.edo12(fork: .c256),
 ); // 456.1401436878537

Get the Frequency at a given temperature:

const Frequency(440).at(const Celsius(18)); // 438.4619866006409
const Frequency(440).at(const Celsius(24)); // 443.07602679871826

Get the closest Pitch from a given Frequency:

const Frequency(432).closestPitch(); // A4−32
const Frequency(314).closestPitch(); // E♭4+16
const Frequency(440).closestPitch(temperature: const Celsius(24)); // A4−12

And combining both frequency and closestPitch methods, the harmonic series of a given Pitch:

Note.c.inOctave(1).harmonics().take(16).toSet();
// {C1±0, C2±0, G2+2, C3±0, E3−14, G3+2, A♯3−31, C4±0,
// D4+4, E4−14, F♯4−49, G4+2, A♭4+41, A♯4−31, B4−12, C5±0}

Create a ClosestPitch by adding or subtracting Cents to a Pitch:

Note.f.sharp.inOctave(4) + const Cent(16); // F♯4+16
Note.g.flat.inOctave(5) - const Cent(8.236); // G♭5−8

Or parse a ClosestPitch from a string:

ClosestPitch.parse('A4'); // A4±0
ClosestPitch.parse('E♭3-28'); // E♭3−28
ClosestPitch.parse('A4+12.6').toString(
 formatter: const StandardClosestPitchNotation(fractionDigits: 1),
); // A4+12.6

In a nutshell

ScalePattern
 .lydian // Lydian (M2 M2 M2 m2 M2 M2 m2)
 .on(Note.parse('a')) // A Lydian (A B C♯ D♯ E F♯ G♯ A)
 .transposeBy(.M2) // B Lydian (B C♯ D♯ E♯ F♯ G♯ A♯ B)
 .degree(.iii) // D♯
 .respelledUpwards // E♭
 .major // E♭ major
 .relative // C minor
 .scale // C Natural minor (aeolian) (C D E♭ F G A♭ B♭ C)
 .degreeChord(.v) // G-
 .add9(); // G-9

Similar projects in other languages

Contributing

Contributions are welcome! If you encounter any issues or have suggestions for improvements, please feel free to open an issue or submit a pull request on the GitHub repository.

Star History

Star History Chart

License

This package is released under the BSD-3-Clause License.

AltStyle によって変換されたページ (->オリジナル) /