Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
/ xlearn Public
forked from aksnzhy/xlearn

High Performance, Easy-to-use, and Scalable Machine Learning Package

License

Notifications You must be signed in to change notification settings

WeeJang/xlearn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

677 Commits

Repository files navigation

Hex.pm Project Status Travis

Installation | Tutorial | RoadMap | News

What is xLearn?

xLearn is a high performance, easy-to-use, and scalable machine learning package, which can be used to solve large-scale classification and regression problems. If you are the user of liblinear, libfm, or libffm, now the xLearn is your another better choice. This project comes from the PKU-Cloud lab: homepage

Performance

xLearn is developed by high-performance C++ code with careful design and optimizations. Our system is designed to maximize the CPU and memory utilizations, provide cache-aware computation, and support lock-free learning. By combining these insights, xLearn is 5x - 13x faster compared to the similar systems.

Ease-of-use

xLearn does not rely on any third-party library, and hence users can just clone the code and compile it by using cmake. Also, xLearn supports very simple python API for users. Apart from this, xLearn supports many useful features that has been widely used in the machine learning competitions like cross-validation, early-stop, etc.

Scalability

xLearn can be used for solving large-scale machine learning problems. First, xLearn supports out-of-core training, which can handle very large data (TB) by just leveraging the disk of a single machine. Also, xLearn can support distributed training, which scales beyond billions of example across many machines.

About

High Performance, Easy-to-use, and Scalable Machine Learning Package

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 83.7%
  • Shell 7.9%
  • Python 4.8%
  • Makefile 2.2%
  • CMake 0.8%
  • M4 0.4%
  • C 0.2%

AltStyle によって変換されたページ (->オリジナル) /