Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 569c0e7

Browse files
Update model_training.py
1 parent faca863 commit 569c0e7

File tree

1 file changed

+12
-6
lines changed

1 file changed

+12
-6
lines changed

‎Malaria/model_training.py

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -52,19 +52,22 @@
5252
labels2 = labels1[n]
5353

5454
# Splitting the dataset into the Training set and Test set
55-
X_train, X_valid, y_train, y_valid = train_test_split(data2, labels2, test_size=0.2, random_state=0)
55+
X_train, X_valid, y_train,y_valid = train_test_split(data2,
56+
labels2, test_size=0.2, random_state=0)
5657
X_trainF = X_train.astype('float32')
57-
X_validF = X_valid.astype('float32')
58+
X_validF = X_valid.astype('float32')
5859
y_trainF = to_categorical(y_train)
5960
y_validF = to_categorical(y_valid)
6061

6162
classifier = Sequential()
6263
# CNN layers
63-
classifier.add(Conv2D(32, kernel_size=(3, 3), input_shape=(36, 36, 3), activation='relu'))
64+
classifier.add(Conv2D(32, kernel_size=(3, 3),
65+
input_shape=(36, 36, 3), activation='relu'))
6466
classifier.add(MaxPooling2D(pool_size=(2, 2)))
6567
classifier.add(BatchNormalization(axis=-1))
6668
classifier.add(Dropout(0.5)) # Dropout prevents overfitting
67-
classifier.add(Conv2D(32, kernel_size=(3, 3), input_shape=(36, 36, 3), activation='relu'))
69+
classifier.add(Conv2D(32, kernel_size=(3, 3),
70+
input_shape=(36, 36, 3), activation='relu'))
6871
classifier.add(MaxPooling2D(pool_size=(2, 2)))
6972
classifier.add(BatchNormalization(axis=-1))
7073
classifier.add(Dropout(0.5))
@@ -73,8 +76,11 @@
7376
classifier.add(BatchNormalization(axis=-1))
7477
classifier.add(Dropout(0.5))
7578
classifier.add(Dense(units=2, activation='softmax'))
76-
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
77-
history = classifier.fit(X_trainF, y_trainF, batch_size=120, epochs=15, verbose=1, validation_data=(X_validF, y_validF))
79+
classifier.compile(optimizer='adam',
80+
loss='categorical_crossentropy', metrics=['accuracy'])
81+
history = classifier.fit(X_trainF, y_trainF,
82+
batch_size=120, epochs=15,
83+
verbose=1, validation_data=(X_validF, y_validF))
7884
classifier.summary()
7985

8086
y_pred = classifier.predict(X_validF)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /