Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit faca863

Browse files
Update model_training.py
1 parent 63adf6a commit faca863

File tree

1 file changed

+5
-8
lines changed

1 file changed

+5
-8
lines changed

‎Malaria/model_training.py

Lines changed: 5 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -16,23 +16,23 @@
1616
data = []
1717
labels = []
1818

19-
Parasitized = os.listdir("../input/cell-images-for-detecting-malaria/cell_images/Parasitized/")
19+
Parasitized = os.listdir("../input/malaria/cell_images/Parasitized/")
2020

2121
for a in Parasitized:
2222
try:
23-
imageP = cv2.imread("../input/cell-images-for-detecting-malaria/cell_images/Parasitized/" + a)
23+
imageP = cv2.imread("../input/malaria/cell_images/Parasitized/" + a)
2424
image_from_arrayP = Image.fromarray(imageP, 'RGB')
2525
size_imageP = image_from_arrayP.resize((36, 36))
2626
data.append(np.array(size_imageP))
2727
labels.append(0)
2828
except AttributeError:
2929
print("")
3030

31-
Uninfected = os.listdir("../input/cell-images-for-detecting-malaria/cell_images/Uninfected/")
31+
Uninfected = os.listdir("../input/malaria/cell_images/Uninfected/")
3232

3333
for b in Uninfected:
3434
try:
35-
imageU = cv2.imread("../input/cell-images-for-detecting-malaria/cell_images/Uninfected/" + b)
35+
imageU = cv2.imread("../input/malaria/cell_images/Uninfected/" + b)
3636
image_from_arrayU = Image.fromarray(imageU, 'RGB')
3737
size_imageU = image_from_arrayU.resize((36, 36))
3838
data.append(np.array(size_imageU))
@@ -54,8 +54,7 @@
5454
# Splitting the dataset into the Training set and Test set
5555
X_train, X_valid, y_train, y_valid = train_test_split(data2, labels2, test_size=0.2, random_state=0)
5656
X_trainF = X_train.astype('float32')
57-
X_validF = X_valid.astype('float32')
58-
# One Hot Encoding
57+
X_validF = X_valid.astype('float32')
5958
y_trainF = to_categorical(y_train)
6059
y_validF = to_categorical(y_valid)
6160

@@ -78,9 +77,7 @@
7877
history = classifier.fit(X_trainF, y_trainF, batch_size=120, epochs=15, verbose=1, validation_data=(X_validF, y_validF))
7978
classifier.summary()
8079

81-
8280
y_pred = classifier.predict(X_validF)
83-
# Convert back to categorical values
8481
y_predF = np.argmax(y_pred, axis=1)
8582
y_valid_one = np.argmax(y_validF, axis=1)
8683
classifier.save("./Malaria/Models/malaria.h5")

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /