Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

决策树分类,决策树深度,特征选择标准,叶子结点最小样本数,贝叶斯分类

Notifications You must be signed in to change notification settings

TLGits/Decision_tree

Repository files navigation

Decision_tree

决策树分类,决策树深度,特征选择标准,叶子结点最小样本数,贝叶斯分类 Decision_tree

文件: Decision_tree_Iris_data.py:手写决策树代码(Iris数据集)(实验一);

Decision_tree_contrast.py:对比实验(实验二);

Decision_tree_contrast.ipynb:对比实验(实验二)(推荐);

Decision_tree_contrast.html: 对比实验(实验二)(推荐);

Decision_tree_contrast.pdf:对比实验(实验二);

requirements.txt:安装依赖

所有程序均在Python3.6版本实现 运行程序前,需要安装对应的工具包:pip install -r requirements.txt

(PS: 为了更好地可视化决策树,需要安装graphviz。流程如下:

第一步是安装graphviz。下载地址在:http://www.graphviz.org/ 如果你是linux,可以用apt-get或者yum的方法安装。如果是windows,就在官网下载msi文件安装。无论是linux还是windows,装完后都要设置环境变量,将graphviz的bin目录加到PATH,比如我是windows,将C:/Program Files (x86)/Graphviz2.38/bin/加入了PATH

第二步是安装python插件graphviz: pip install graphviz

第三步是安装python插件pydotplus。这个没有什么好说的: pip install pydotplus)

参考:https://blog.csdn.net/t949500898/article/details/107399267

About

决策树分类,决策树深度,特征选择标准,叶子结点最小样本数,贝叶斯分类

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /