Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

THUIR/PreHash

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

4 Commits

Repository files navigation

PreHash

This is our implementation for the paper:

Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan, Yiqun Liu, and Shaoping Ma. 2020. Beyond User Embedding Matrix: Learning to Hash for Modeling Large-Scale Users in Recommendation In SIGIR'20.

Please cite our paper if you use our codes. Thanks!

Author: Shaoyun Shi (shisy13 AT gmail.com)

@inproceedings{shi2020prehash,
 title={Beyond User Embedding Matrix: Learning to Hash for Modeling Large-Scale Users in Recommendation},
 author={Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan, Yiqun Liu, and Shaoping Ma},
 booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
 year={2020},
 page={319--328},
 organization={ACM}
}

Environments

Python 3.7.6

Packages: See in requirements.txt

pathos==0.2.5
tqdm==4.42.1
numpy==1.18.1
torch==1.1.0
pandas==1.0.1
scikit_learn==0.23.1

Datasets

The processed datasets can be downloaded from Tsinghua Cloud or Google Drive.

You should place the datasets in the ./dataset/. The tree structure of directories should look like:

.
├── dataset
│  ├── Books-1-1
│  ├── Grocery-1-1
│  ├── Pet-1-1
│  ├── RecSys2017-1-1
│  └── VideoGames-1-1
└── src
 ├── data_loaders
 ├── data_processors
 ├── datasets
 ├── models
 ├── runners
 └── utils
  • Amazon Datasets: The origin dataset can be found here.

  • RecSys2017 Dataset: The origin dataset can be found here.

  • The codes for processing the data can be found in ./src/datasets/

Example to run the codes

# PreHash enhanced BiasedMF on Grocery dataset
> cd PreHash/src/
> python main.py --model_name PreHash --dataset Grocery-1-1 --rank 1 --metrics ndcg@10,precision@1 --lr 0.001 --l2 1e-7 --train_sample_n 1 --hash_u_num 1024 --sparse_his 0 --max_his 10 --sup_his 1 --random_seed 2018 --gpu 0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /