Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

SssJC123/RecSys

Repository files navigation

RecSys

推荐系统算法总结

本项目实现了以下推荐算法

算法 解析 文件 算法评估
UserCF 【推荐系统】算法总结(1) UserCF UserCF.py result
ItemCF 【推荐系统】算法总结(2) ItemCF ItemCF result

运行

# 直接运行
if __name__ == '__main__':
 userCF = UserCF() 
 userCF.K = 20 # 可以设置相关参数和变量,在UserCF模块属性中
 userCF.run() 
# 分步调试
if __name__ == '__main__':
 userCF = UserCF()
 userCF.load_data() # 加载数据
 userCF.calc_user_sim() # 计算用户相似度
 result = pd.DataFrame(columns=['K', 'N', "precision", 'recall', 'cov', 'pop']) # 评估准确率,召回率,覆盖率,流行度
 for index, K in enumerate(range(5, 41)):
 userCF.K = K
 userCF.rec()
 precision, recall, cov, pop = userCF.evaluate()
 result.loc[index] = K, userCF.N, precision, recall, cov, pop
				SaveHelper.save(result, 'UserCF')

About

推荐系统算法总结

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /