Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

基于keras集成多种图像分类模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet_101、ResNet_152、DenseNet

Notifications You must be signed in to change notification settings

PrivateMaRyan/image_class

Repository files navigation

图像分类集成以下模型:ResNet18、ResNet34、ResNet50、ResNet101、ResNet152、VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、DenseNet、mnist_net、TSL16,在config.py里面选择使用哪种模型.

the project apply the following models:

  • VGG16
  • VGG19
  • InceptionV3
  • Xception
  • MobileNet
  • AlexNet
  • LeNet
  • ZF_Net
  • ResNet18
  • ResNet34
  • ResNet50
  • ResNet101
  • ResNet152
  • DenseNet(dismissed this time)
  • mnist_net
  • TSL16

train or test dataset

classes name contained in folder name

"training or testing dataset folder is:"

/path/classes1/cat*.jpg,

/path/classes2/dog*.jpg,

/path/classes3/people*.jpg,

/path/classes4/*.jpg,

  • Attentions ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  • classes name must be contained in folder name

environment

My environment is based on

  • ubuntu16
  • cuda8 (cuda9.0)
  • tensorflow_gpu1.4 (tensorflow_gpu1.10 )
  • keras2.0.8
  • numpy
  • tqdm
  • opencv-python
  • scikit-learn

Install packages

  • pip3 install tensorflow_gpu==1.4
  • pip3 install keras==2.0.8
  • pip3 install numpy
  • pip3 install tqdm
  • pip3 install opencv-python
  • pip3 install scikit-learn

1.confirm config.py

  • choose model and change parameter in config.py

2.train or test dataset prepare

  • python3 mk_class_idx.py

3.train your model

  • Train sigle model : python3 train.py modelName
  • Train All model : run " sh trainAll.sh " to train all model (in ubuntu)
  • Tensorboard : take LeNet as example, run " tensorboard --logdir=./checkpoints/LeNet " to watch training with tensorboard

4.predict your model

  • predict model: python3 predict.py modelName classesName

5.result of mnist dataset(number 0~9)

Image text

Any Questions???

Author email: mymailwith163@163.com

Some issue

I do not provide any trained model, and so, you should train your own model, if you get error: "rm: cannot remove 'checkpoints/ModelName/events*': No such file or directory", do not worry, It means you has not trained your model, and just go to enjoy training.

About

基于keras集成多种图像分类模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet_101、ResNet_152、DenseNet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Shell 0.8%

AltStyle によって変換されたページ (->オリジナル) /