Cite ptep Latest PDF Cite rXiv Cite viXra Build Status codecov Binder Colab nbviewer Binder
This repository contains python code and Jupyter notebooks presenting 48 Methods exhibiting the age of the universe (Hubble radius distance) using 3 physical constants excluding the speed of light.
Source Context:
The formula
Dimensional Relationships
The quantity for length (L) can be derived from the Planck constants. Using dimensional analysis:
To incorporate the masses of fundamental particles, we treat
M as the combination of
These 48 formulas illustrate how one can "compute" a cosmic length scale using only ħ, G, and the masses
Physical Interpretation: In a standard cosmological setting the Hubble radius is defined by
import scipy.constants as const
import numpy as np
# Constants (CODATA 2018/2022 values for consistency)
hbar = const.hbar # Reduced Planck constant (J·s)
G = const.G # Gravitational constant (m^3·kg^−1·s^−2)
m_e = const.electron_mass # Electron mass (kg)
m_p = const.proton_mass # Proton mass (kg)
m_n = const.neutron_mass # Neutron mass (kg)
alpha = const.alpha # Fine-structure constant (dimensionless)
# Conversion constants
meters_per_lightyear = 9.461e15 # Approximate meters in one light-year
meters_to_gly = 1 / (meters_per_lightyear * 1e9) # Convert meters to gigalight-years
# JWST measured value (placeholder, in meters)
jwst_measured_value = 1.308e+26 # Approximate JWST value (corresponding to 13.81 Gly)
# Ratio of Compton wavelength to Planck length
lambda_e = hbar / (m_e * const.c) # Electron Compton wavelength (m)
L_planck = np.sqrt(hbar * G / const.c**3) # Planck length (m)
P = lambda_e / L_planck
# Precision formula
def precision_formula(P, alpha, lambdabare):
"""
Precision theory formula for calculation.
P: Ratio of Compton wavelength to Planck length
alpha: Fine-structure constant
lambdabare: Bare constant input
"""
term1 = np.e**(4 * np.e - 1 / alpha)
term2 = np.log(P**4 / alpha**3)**2
exponent = np.sqrt((term1 - term2) / 2)
return np.exp(exponent) * lambdabare
# Corrected formula: R = 2 * hbar^2 / (G * m_e * m_n * m_p)
def corrected_formula(hbar, G, m_e, m_p, m_n):
"""
Calculates the Hubble radius using the corrected formula.
"""
return 2 * hbar**2 / (G * m_e * m_n * m_p)
# Adjusted lambdabare value for scaling
lambdabare = 1e-5 # Example value in meters
# Calculate corrected formula result
corrected_result = corrected_formula(hbar, G, m_e, m_p, m_n)
corrected_result_gly = corrected_result * meters_to_gly # Convert to gigalight-years
# Calculate precision formula result
precision_result = precision_formula(P, alpha, lambdabare)
precision_result_gly = precision_result * meters_to_gly # Convert to gigalight-years
# Calculate precision difference (JWST deviation)
precision_difference = abs(corrected_result_gly - 13.81) / 13.81
# Output results
print("Hubble Radius Calculation:")
print(f"Corrected Formula:")
print(f"R (meters) = {corrected_result:.3e} m")
print(f"R (gigalight-years) = {corrected_result_gly:.3f} Gly")
print("\nPrecision Formula Calculation:")
print(f"R (meters) = {precision_result:.3e} m")
print(f"R (gigalight-years) = {precision_result_gly:.3f} Gly")
print("\nJWST Measured Value:")
print(f"JWST Value (meters) = {jwst_measured_value:.3e} m")
print(f"JWST Value (gigalight-years) = {jwst_measured_value * meters_to_gly:.3f} Gly")
print(f"\nPrecision Difference (Relative Error): {precision_difference:.5%}")
In addition we used Python modules such as: scipy, sympy, pandas and numpy
Fixed Constants used are:
- π=3.141592653589793... https://oeis.org/A000796
- Euler Mascheroni γ=0.5772156649015329... https://oeis.org/A001620
- Atiyah's Γ=25.178097241906...
- Feigenbaum constant δ=4.669201609102990671853... https://oeis.org/A006890
- 2nd Feigenbaum constant α=2.50290787509589282228390287321... https://oeis.org/A006891
- Eddington Electric Constant a=137.0359990836958 also known as the inversed fine structure constant CODATA2018
- c=299792458.0 m/s CODATA2018
- h=6.62607015.10−34 J.Hz−1 CODATA2018
- ħ=1.0545718176461565.10−34 J.s CODATA2018
- lP=1.616255.10−35 m Planck length
- mP=2.176434.10−8 kg Planck mass
- ƛe =3.8615926796.10−13 m Reduced (Electron) Compton Wavelength CODATA2018
- ƛp =2.10308910336.10−16 m Reduced (Proton) Compton Wavelength CODATA2018
- Mass of the electron me=9.1093837015.10−31 kg CODATA2018
- Mass of the proton mp=1.67262192369.10−27 kg CODATA2018
- Boson W=80.379GeV ± 0.012 Particle Data Group Bosons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
- Boson Z=91.1876GeV ± 0.0023 Particle Data Group Bosons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
- Lepton e=0.5109989461MeV Particle Data Group Leptons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
- Baryon p=938.272081MeV Particle Data Group Baryons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
- Baryon n=939.565413MeV Particle Data Group Baryons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
- G=6.6743.10−11 m3.kg−1.s−2 Newtonian constant of gravitation CODATA2018
- Gq=6.6755.10−11 m3.kg−1.s−2 Newtonian constant of gravitation measured by T.Quinn et al. (2013) BIPM Sevres Improved determination of G using two methods
- Gb2c=6.6754552.10−11 m3.kg−1.s−2 Newtonian constant of gravitation estimated by Francis M. Sanchez et al. (2019) in Back to Cosmos
- Gs=6.67545372.10−11 m3.kg−1.s−2 Newtonian constant of gravitation estimate by Francis M. Sanchez (Jan 2020)