Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A Python implementation of Kernel Principal Component Analysis (KPCA)

Notifications You must be signed in to change notification settings

JAVI897/Kernel-PCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

14 Commits

Repository files navigation

Kernel-PCA

A Python implementation of Kernel Principal Component Analysis (KPCA). Kernels implemented:

  • Linear
  • Radial Basis Function
  • Exponential
  • Laplacian
  • Anova
  • Polynomial
  • Sigmoid
  • Rotational quadratic
  • Multiquadric
  • Power
  • Spherical
  • Circular

Requirements

  • numpy
  • matplotlib
  • seaborn

Run

from kpca import KPCA
from kernels import kernel
X = np.array([[2,3,4], [1,2,3]]) # dxn
k = kernel(sigma=0.0009, d_anova=3).anova
kpca = KPCA(X, k, 3)
scores = kpca.project().T

About

A Python implementation of Kernel Principal Component Analysis (KPCA)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /