Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Infant-Joshva/AdSpotter-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

53 Commits

Repository files navigation

⚡AdSpotter AI – Sports Sponsorship Intelligence

AI-powered system for automated advertisement detection, brand visibility analytics, video chunking, PDF report generation, and RAG-based conversational insights — built for analysing cricket match broadcasts and producing sponsor-ready analytics.

🚀 Project Overview

AdSpotter AI – Sports Sponsorship Intelligence detects brand advertisements in match videos, calculates visibility metrics, classifies placements, extracts brand chunks, stores analytics in an RDS, and exposes dashboards + a RAG-powered chatbot for natural language queries.

🎯 Key Features

  • Brand Detection (YOLOv8 – Ultralytics)
  • Placement Classification (boundary, jersey, overlay, scoreboard)
  • Match Moment Tagging (six, wicket, batting, bowling, fielding)
  • Timestamp & Duration Extraction
  • Video Chunking (FFmpeg + S3 Upload)
  • Automated PDF Report Generation
  • Interactive Streamlit Dashboard
  • RAG Chatbot using Google Generative AI

📁 Folder Structure


Jio_AdVision_Analytics/
├── app/ # Streamlit dashboard UI + backend processing functions
├── docs/ # source video links
├── model/ # YOLO models
├── notebooks/ # Jupyter notebooks for experimentation & testing
├── testing_video/ # Small test videos used for demo/testing purpose
├── requirements.txt # Python dependency list
├── README.md 
└── .gitignore 

📸 Dashboard Screenshot


📄 About Project

About-Page

🧭 Insights & Metrics

Tracking

Visual Analytics

Brand Exposure Insights

Chat Bot

System Controls


🛠️ Tech Stack

  • YOLOv8 (Ultralytics)
  • OpenCV
  • Streamlit
  • Plotly
  • SQLAlchemy
  • PostgreSQL (RDS)
  • boto3 (AWS S3)
  • FFmpeg
  • ReportLab
  • Google Generative AI (RAG)

⚙️ Setup Instructions

1. Clone Repo

git clone https://github.com/Infant-Joshva/Jio_AdVision_Analytics.git
cd Jio_AdVision_Analytics

2. Install Dependencies

pip install -r requirements.txt

3. Add Secrets

Create app/.streamlit/secrets.toml with:

aws_access_key="YOUR_AWS_KEY"
aws_secret_key="YOUR_AWS_SECRET"
bucket_name="YOUR_BUCKET_NAME"
genai_api_key="YOUR_GENAI_KEY"
database_url="postgresql://user:pass@host:port/db"

4. Run Dashboard

streamlit run app/main.py

📦 AWS S3 Structure


s3://jioadvision-uploads/
 └── MatchID/
 └── chunks/
 └── chunk.mp4
 └── raw/
 └── raw.mp4
 └── track/
 └── track.mp4

📄 PDF Report Output

  • Visibility duration
  • Visibility ratio
  • Placement distribution
  • Event-based visibility
  • S3 chunk links

🧩 API Endpoints

POST /api/upload
GET /api/status/<id>
GET /api/report/<match>
GET /api/aggregate

📈 Evaluation Metrics

  • Detection precision / recall / F1
  • Timestamp accuracy
  • Video chunk quality
  • Dashboard-RDS sync accuracy
  • RAG answer correctness

✅ Deliverables

  • Full pipeline code
  • YOLO model + weights
  • Test video
  • Extracted clips
  • Streamlit dashboard
  • PDF reports
  • RAG chatbot
  • Documentation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /