Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Data-driven Computational Modelling

Hasenauer Lab @ University of Bonn (formerly at Helmholtz Munich)

Hi there 👋

This is the GitHub organization of the Hasenauer Lab at University of Bonn, Germany.

For our research in computational biology, we developed a number of tools, mostly around simulation of dynamical models and parameter inference.

The highlights are:

  • pypesto for parameter estimation in Python
  • PEtab for specifying parameter estimation problems in systems biology in an efficient and interoperable manner
  • AMICI for scalable simulation and sensitivity analysis (Python / C++ (/ Matlab))
  • pyABC for distributed and scalable ABC-SMC (Approximate Bayesian Computation - Sequential Monte Carlo) for parameter estimation of complex stochastic models (Python)

Pinned Loading

  1. pyABC pyABC Public

    distributed, likelihood-free inference

    Python 216 46

  2. pyPESTO pyPESTO Public

    python Parameter EStimation TOolbox

    Python 266 47

  3. parPE parPE Public

    Parameter estimation for dynamical models using high-performance computing, batch and mini-batch optimizers, and dynamic load balancing.

    C++ 22 4

  4. PESTO PESTO Public

    PESTO: Parameter EStimation TOolbox, Bioinformatics, btx676, 2017.

    MATLAB 27 12

Repositories

Loading
Type
Select type
Language
Select language
Sort
Select order
Showing 10 of 29 repositories

AltStyle によって変換されたページ (->オリジナル) /