Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Gojay001/code-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

31 Commits

Repository files navigation

Toolkit

Toolkit for coding, including deep learning, image processing, file processing.

.
 |- source-code/
 |- bn_details.py
 |- bn_run.py
 |- CrossEntropyLoss.py
 |- regularization.py
 |- SoftMax.py
 | - torch_model/
 |- vgg.py
 |- resnet.py
 |- densenet.py
 |- fcn8s.py
 |- unet.py
 |- pspnet.py
 |- deeplabv3+ (deeplabv3+.py, resnet_deeplab.py, aspp.py, decoder.py)
 |- DualGCN.py
 |- JL_DCF.py
 |- swin transformer (swin_transformer_seg.py, mlp_decoder.py)
 |- torch_template
 |- test_net.py
 |- test.py
 |- train.py
 |- utils/
 |- data
 |- data_config.py
 |- divide_data.py
 |- img_ops.py
 |- imgs2video.py
 |- nms
 |- nms_cpu.py
 |- ...
 |- bbox_iou.py
 |- bbox_iou_python.py
 |- img2video.py
 |- BN_torch.py
 |- count_norm.py
 |- dataset.py
 |- loss.py
 |- seg_transform.py
 |- show_img.py
 |- README.md

source_code

source-code/bn_details.py : implementation of BN(BatchNormalization) and analysis of its details.

source-code/bn_run.py : implementation of BN(BatchNormalization) and simulation of running.

source-code/CrossEntropyLoss.py : implementation of custom CrossEntropyLoss and BCELoss.

source-code/regularization.py : implementation of L1/L2 normalization, L1/L2 regularization and Dropout.

source-code/SoftMax.py : implementation of SoftMax function in various version.

torch_model

model/vgg.py : ICLR(2015) paper.

model/resnet.py : CVPR(2016) paper.

model/densenet.py : CVPR(2017) paper.

model/fcn8s.py : CVPR(2015) paper.

model/unet.py : MICCAI(2015) paper.

model/pspnet.py : CVPR(2017) paper.

model/deeplabv3+ : ECCV(2018) paper.

model/DualGCN.py : BMVC(2019) paper.

model/JL_DCF.py : CVPR(2020) paper.

model/swin transformer : arXiv(2021) paper.

utils

utils/data/count_nrom.py : count the mean and the standard deviation from datasets.

utils/data/data_config.py : config (hyper-)parameters in main.py.

utils/data/dataset.py : implementation of dataset in segmentation.

utils/data/divide_data.py : divide origin data into train and valid set.

utils/data/img_ops.py : resize, hist equalize and blur images using opencv.

utils/data/imgs2video.py : convert images to video and extract images from video.

utils/data/seg_transform.py : implementation of transform module in segmentation.

utils/nms/nms_cpu.py : remove useless bounding-box by nms(Non-maximum suppression).

utils/bbox_iou.py : calculate iou(Intersection-of-Union) between two bounding-box.

utils/bbox_iou_python.py : calculate iou in python version.

utils/imgs2video.py : convert images to video and extract images from video.

utils/logging_util.py : implementation of logging module with formatting.

utils/loss.py : implementation of loss function, including FocalLoss, BinaryDiceLoss.

utils/show_img.py : visualize image in both plt(matplotlib.pyplot) and cv2(opencv).

(Updating...)

About

There are frequently used tools for coding.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /