Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Twitter的分布式自增ID雪花算法snowflake (Java版)

Notifications You must be signed in to change notification settings

Daibhid666/SnowFlake

Repository files navigation

snowflake的结构如下(每部分用-分开):

概述

分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。

有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。

而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。

结构

snowflake的结构如下(每部分用-分开):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)

一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)

snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。据说:snowflake每秒能够产生26万个ID。

本机实测:100万个ID 耗时5秒

/**
 * 描述: Twitter的分布式自增ID雪花算法snowflake (Java版)
 *
 * @author yanpenglei
 * @create 2018年03月13日 12:37
 **/
public class SnowFlake {
 /**
 * 起始的时间戳
 */
 private final static long START_STMP = 1480166465631L;
 /**
 * 每一部分占用的位数
 */
 private final static long SEQUENCE_BIT = 12; //序列号占用的位数
 private final static long MACHINE_BIT = 5; //机器标识占用的位数
 private final static long DATACENTER_BIT = 5;//数据中心占用的位数
 /**
 * 每一部分的最大值
 */
 private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
 private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
 private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
 /**
 * 每一部分向左的位移
 */
 private final static long MACHINE_LEFT = SEQUENCE_BIT;
 private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
 private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
 private long datacenterId; //数据中心
 private long machineId; //机器标识
 private long sequence = 0L; //序列号
 private long lastStmp = -1L;//上一次时间戳
 public SnowFlake(long datacenterId, long machineId) {
 if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
 throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
 }
 if (machineId > MAX_MACHINE_NUM || machineId < 0) {
 throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
 }
 this.datacenterId = datacenterId;
 this.machineId = machineId;
 }
 /**
 * 产生下一个ID
 *
 * @return
 */
 public synchronized long nextId() {
 long currStmp = getNewstmp();
 if (currStmp < lastStmp) {
 throw new RuntimeException("Clock moved backwards. Refusing to generate id");
 }
 if (currStmp == lastStmp) {
 //相同毫秒内,序列号自增
 sequence = (sequence + 1) & MAX_SEQUENCE;
 //同一毫秒的序列数已经达到最大
 if (sequence == 0L) {
 currStmp = getNextMill();
 }
 } else {
 //不同毫秒内,序列号置为0
 sequence = 0L;
 }
 lastStmp = currStmp;
 return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
 | datacenterId << DATACENTER_LEFT //数据中心部分
 | machineId << MACHINE_LEFT //机器标识部分
 | sequence; //序列号部分
 }
 private long getNextMill() {
 long mill = getNewstmp();
 while (mill <= lastStmp) {
 mill = getNewstmp();
 }
 return mill;
 }
 private long getNewstmp() {
 return System.currentTimeMillis();
 }
 public static void main(String[] args) {
 SnowFlake snowFlake = new SnowFlake(2, 3);
 long start = System.currentTimeMillis();
 for (int i = 0; i < 1000000; i++) {
 System.out.println(snowFlake.nextId());
 }
 System.out.println(System.currentTimeMillis() - start);
 }
}

About

Twitter的分布式自增ID雪花算法snowflake (Java版)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 100.0%

AltStyle によって変換されたページ (->オリジナル) /