Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Langbase AI SDK for building declarative and composable AI-powered LLM products.

License

Notifications You must be signed in to change notification settings

CommandCodeAI/langbase-sdk-python

Repository files navigation

Langbase Python SDK

PyPI version Python 3.7+ License: Apache 2.0

The official Python SDK for Langbase - Build declarative and composable AI-powered LLM products with ease.

Documentation

Check the Langbase SDK documentation for more details.

The following examples are for reference only. Prefer docs for the latest information.

Features

  • Simple and intuitive API - Get started in minutes
  • Streaming support - Real-time text generation with typed events
  • Type safety - Full type hints for better IDE support
  • Minimal dependencies - Only what you need
  • Python 3.7+ - Support for modern Python versions

Installation

Install Langbase SDK:

pip install langbase

Install dotenv:

pip install dotenv

Quick Start

1. Set up your API key

Create a .env file and add your Langbase API Key.

LANGBASE_API_KEY="your-api-key"
LLM_API_KEY="your-llm-api-key"

2. Initialize the client

from langbase import Langbase
import os
from dotenv import load_dotenv
load_dotenv()
# Get API key from environment variable
langbase_api_key = os.getenv("LANGBASE_API_KEY")
llm_api_key = os.getenv("LLM_API_KEY")
# Initialize the client
langbase = Langbase(api_key=langbase_api_key)

3. Generate text

# Simple generation
response = langbase.agent.run(
 input=[{"role": "user", "content": "Tell me about AI"}],
 model="openai:gpt-4.1-mini",
 api_key=llm_api_key,
)
print(response["output"])

4. Stream text (Simple)

form langbase import get_runner
# Stream text as it's generated
response = langbase.agent.run(
 input=[{"role": "user", "content": "Tell me about AI"}],
 model="openai:gpt-4.1-mini",
 api_key=llm_api_key,
 stream=True,
)
runner = get_runner(response)
for content in runner.text_generator():
 print(content, end="", flush=True)

5. Stream with typed events (Advanced)

from langbase import StreamEventType, get_typed_runner
response = langbase.agent.run(
 input=[{"role": "user", "content": "What is an AI Engineer?"}],
 model="openai:gpt-4.1-mini",
 api_key=llm_api_key,
 stream=True,
)
# Create typed stream processor
runner = get_typed_runner(response)
# Register event handlers
runner.on(
 StreamEventType.CONNECT,
 lambda event: print(f"βœ“ Connected! Thread ID: {event['threadId']}\n"),
)
runner.on(
 StreamEventType.CONTENT,
 lambda event: print(event["content"], end="", flush=True),
)
runner.on(
 StreamEventType.TOOL_CALL,
 lambda event: print(
 f"\nπŸ”§ Tool call: {event['toolCall']['function']['name']}"
 ),
)
runner.on(
 StreamEventType.COMPLETION,
 lambda event: print(f"\n\nβœ“ Completed! Reason: {event['reason']}"),
)
runner.on(
 StreamEventType.ERROR,
 lambda event: print(f"\n❌ Error: {event['message']}"),
)
runner.on(
 StreamEventType.END,
 lambda event: print(f"⏱️ Total duration: {event['duration']:.2f}s"),
)
# Process the stream
runner.process()

Core Features

Pipes - AI Pipeline Execution

# List all pipes
pipes = langbase.pipes.list()
# Run a pipe
response = langbase.pipes.run(
 name="ai-agent",
 messages=[{"role": "user", "content": "Hello!"}],
 variables={"style": "friendly"}, # Optional variables
 stream=True, # Enable streaming
)

Memory - Persistent Context Storage

# Create a memory
memory = langbase.memories.create(
 name="product-docs",
 description="Product documentation",
)
# Upload documents
langbase.memories.documents.upload(
 memory_name="product-docs",
 document_name="guide.pdf",
 document=open("guide.pdf", "rb"),
 content_type="application/pdf",
)
# Retrieve relevant context
results = langbase.memories.retrieve(
 query="How do I get started?",
 memory=[{"name": "product-docs"}],
 top_k=3,
)

Agent - LLM Agent Execution

# Run an agent with tools
response = langbase.agent.run(
 model="openai:gpt-4",
 messages=[{"role": "user", "content": "Search for AI news"}],
 tools=[{"type": "function", "function": {...}}],
 tool_choice="auto",
 api_key="your-llm-api-key",
 stream=True,
)

Tools - Built-in Utilities

# Chunk text for processing
chunks = langbase.chunker(
 content="Long text to split...",
 chunk_max_length=1024,
 chunk_overlap=256,
)
# Generate embeddings
embeddings = langbase.embed(
 chunks=["Text 1", "Text 2"],
 embedding_model="openai:text-embedding-3-small",
)
# Parse documents
content = langbase.parser(
 document=open("document.pdf", "rb"),
 document_name="document.pdf",
 content_type="application/pdf",
)

Examples

Explore the examples directory for complete working examples:

SDK Reference

For detailed SDK documentation, visit langbase.com/docs/sdk.

Contributing

We welcome contributions! Please see our Contributing Guide for details.

Support

License

See the LICENSE file for details.

About

Langbase AI SDK for building declarative and composable AI-powered LLM products.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

Languages

AltStyle γ«γ‚ˆγ£γ¦ε€‰ζ›γ•γ‚ŒγŸγƒšγƒΌγ‚Έ (->γ‚ͺγƒͺγ‚ΈγƒŠγƒ«) /