Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit d7d2147

Browse files
committed
update benchmark results
1 parent 52dc779 commit d7d2147

File tree

38 files changed

+835
-422
lines changed

38 files changed

+835
-422
lines changed

‎ImageNet/training_scripts/imagenet_training/results/add_acc_to_benchmarks.py

Lines changed: 13 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
import os
12
import pandas as pd
23
import argparse
34

@@ -11,7 +12,7 @@
1112
)
1213
parser.add_argument(
1314
"--bench-csv",
14-
default="./benchmark_inference_GTX1080_fp32_small_torch1.10.csv",
15+
default="",
1516
type=str,
1617
metavar="FILENAME",
1718
help="the csv file for which you want to add accuracy",
@@ -23,10 +24,18 @@ def add_acc_to_csv(imagenet_results, csv_filename):
2324
df_imagenet_accs = df_imagenet_results[["model", "top1", "top5"]]
2425
df_csv = pd.read_csv(csv_filename)
2526
df_csv_acc = pd.merge(df_csv, df_imagenet_accs, on=["model"])
26-
df_csv_acc.to_csv(csv_filename.replace(".csv", "_with_accuracy.csv"), index=False)
27-
print(f"{csv_filename} is done")
27+
df_csv_acc.to_csv(csv_filename.replace(".csv", "_acc.csv"), index=False)
28+
print(f"--{csv_filename:<60} is processed.")
2829

2930

3031
if __name__ == "__main__":
3132
args = parser.parse_args()
32-
add_acc_to_csv(args.imagenet_results, args.bench_csv)
33+
if args.bench_csv:
34+
add_acc_to_csv(args.imagenet_results, args.bench_csv)
35+
else:
36+
print('Fetching all benchmark logs and adding accuracy to all in bulk...')
37+
current_dir = os.path.dirname(os.path.abspath(__file__))
38+
for file in os.listdir(current_dir):
39+
if 'bench' in file and file.endswith('.csv'):
40+
add_acc_to_csv(args.imagenet_results, file)
41+
print(f'all done.')

‎ImageNet/training_scripts/imagenet_training/results/bench_infer_GTX1080_fp32_normal_known_t1.10.csv

Lines changed: 0 additions & 37 deletions
This file was deleted.

‎ImageNet/training_scripts/imagenet_training/results/bench_infer_GTX1080_fp32_normal_known_t1.10_acc.csv

Lines changed: 0 additions & 37 deletions
This file was deleted.

‎ImageNet/training_scripts/imagenet_training/results/bench_infer_GTX1080_fp32_normal_known_t1.11.csv

Lines changed: 0 additions & 37 deletions
This file was deleted.
Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count
2+
simplenetv1_small_m1_075,2893.91,88.444,256,224,0.76,1.49,3.29
3+
simplenetv1_small_m2_075,2478.41,103.276,256,224,0.96,1.71,3.29
4+
vit_tiny_r_s16_p8_224,2337.23,109.515,256,224,0.44,2.06,6.34
5+
simplenetv1_5m_m1,2105.06,121.594,256,224,1.35,1.98,5.75
6+
simplenetv1_5m_m2,1754.25,145.914,256,224,1.69,2.28,5.75
7+
resnet18,1750.38,146.235,256,224,1.82,2.48,11.69
8+
regnetx_006,1620.25,157.982,256,224,0.61,3.98,6.2
9+
mobilenetv3_large_100,1491.86,171.579,256,224,0.23,4.41,5.48
10+
tf_mobilenetv3_large_minimal_100,1476.29,173.391,256,224,0.22,4.4,3.92
11+
tf_mobilenetv3_large_075,1474.77,173.567,256,224,0.16,4.0,3.99
12+
ghostnet_100,1390.19,184.13,256,224,0.15,3.55,5.18
13+
tinynet_b,1345.82,190.2,256,188,0.21,4.44,3.73
14+
tf_mobilenetv3_large_100,1325.06,193.181,256,224,0.23,4.41,5.48
15+
mnasnet_100,1183.69,216.252,256,224,0.33,5.46,4.38
16+
mobilenetv2_100,1101.58,232.375,256,224,0.31,6.68,3.5
17+
simplenetv1_9m_m1,1048.91,244.043,256,224,2.78,3.28,9.51
18+
resnet34,1030.4,248.426,256,224,3.67,3.74,21.8
19+
deit_tiny_patch16_224,990.85,258.344,256,224,1.26,5.97,5.72
20+
efficientnet_lite0,977.76,261.802,256,224,0.4,6.74,4.65
21+
simplenetv1_9m_m2,900.45,284.28,256,224,3.56,3.73,9.51
22+
tf_efficientnet_lite0,876.66,291.999,256,224,0.4,6.74,4.65
23+
dla34,834.35,306.803,256,224,3.07,5.02,15.74
24+
mobilenetv2_110d,824.4,310.505,256,224,0.45,8.71,4.52
25+
resnet26,771.1,331.973,256,224,2.36,7.35,16.0
26+
repvgg_b0,751.01,340.855,256,224,3.41,6.15,15.82
27+
crossvit_9_240,606.2,422.278,256,240,1.85,9.52,8.55
28+
vgg11,576.32,444.176,256,224,7.61,7.44,132.86
29+
vit_base_patch32_224_sam,561.99,455.502,256,224,4.41,5.01,88.22
30+
vgg11_bn,504.29,507.616,256,224,7.62,7.44,132.87
31+
densenet121,435.3,588.073,256,224,2.87,6.9,7.98
32+
vgg13,363.69,703.869,256,224,11.31,12.25,133.05
33+
vgg13_bn,315.85,810.498,256,224,11.33,12.25,133.05
34+
vgg16,302.84,845.295,256,224,15.47,13.56,138.36
35+
vgg16_bn,265.99,962.41,256,224,15.5,13.56,138.37
36+
vgg19,259.82,985.288,256,224,19.63,14.86,143.67
37+
vgg19_bn,229.77,1114.113,256,224,19.66,14.86,143.68
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count,top1,top5
2+
simplenetv1_small_m1_075,2893.91,88.444,256,224,0.76,1.49,3.29,67.784,87.718
3+
simplenetv1_small_m2_075,2478.41,103.276,256,224,0.96,1.71,3.29,68.506,88.15
4+
vit_tiny_r_s16_p8_224,2337.23,109.515,256,224,0.44,2.06,6.34,71.792,90.822
5+
simplenetv1_5m_m1,2105.06,121.594,256,224,1.35,1.98,5.75,71.548,89.94
6+
simplenetv1_5m_m2,1754.25,145.914,256,224,1.69,2.28,5.75,72.03,90.324
7+
resnet18,1750.38,146.235,256,224,1.82,2.48,11.69,69.744,89.082
8+
regnetx_006,1620.25,157.982,256,224,0.61,3.98,6.2,73.86,91.672
9+
mobilenetv3_large_100,1491.86,171.579,256,224,0.23,4.41,5.48,75.766,92.544
10+
tf_mobilenetv3_large_minimal_100,1476.29,173.391,256,224,0.22,4.4,3.92,72.25,90.63
11+
tf_mobilenetv3_large_075,1474.77,173.567,256,224,0.16,4.0,3.99,73.436,91.344
12+
ghostnet_100,1390.19,184.13,256,224,0.15,3.55,5.18,73.974,91.46
13+
tinynet_b,1345.82,190.2,256,188,0.21,4.44,3.73,74.976,92.184
14+
tf_mobilenetv3_large_100,1325.06,193.181,256,224,0.23,4.41,5.48,75.518,92.604
15+
mnasnet_100,1183.69,216.252,256,224,0.33,5.46,4.38,74.658,92.112
16+
mobilenetv2_100,1101.58,232.375,256,224,0.31,6.68,3.5,72.97,91.02
17+
simplenetv1_9m_m1,1048.91,244.043,256,224,2.78,3.28,9.51,73.792,91.486
18+
resnet34,1030.4,248.426,256,224,3.67,3.74,21.8,75.114,92.284
19+
deit_tiny_patch16_224,990.85,258.344,256,224,1.26,5.97,5.72,72.172,91.114
20+
efficientnet_lite0,977.76,261.802,256,224,0.4,6.74,4.65,75.476,92.512
21+
simplenetv1_9m_m2,900.45,284.28,256,224,3.56,3.73,9.51,74.23,91.748
22+
tf_efficientnet_lite0,876.66,291.999,256,224,0.4,6.74,4.65,74.832,92.174
23+
dla34,834.35,306.803,256,224,3.07,5.02,15.74,74.62,92.072
24+
mobilenetv2_110d,824.4,310.505,256,224,0.45,8.71,4.52,75.038,92.184
25+
resnet26,771.1,331.973,256,224,2.36,7.35,16.0,75.3,92.578
26+
repvgg_b0,751.01,340.855,256,224,3.41,6.15,15.82,75.16,92.418
27+
crossvit_9_240,606.2,422.278,256,240,1.85,9.52,8.55,73.96,91.968
28+
vgg11,576.32,444.176,256,224,7.61,7.44,132.86,69.028,88.626
29+
vit_base_patch32_224_sam,561.99,455.502,256,224,4.41,5.01,88.22,73.694,91.01
30+
vgg11_bn,504.29,507.616,256,224,7.62,7.44,132.87,70.36,89.802
31+
densenet121,435.3,588.073,256,224,2.87,6.9,7.98,75.584,92.652
32+
vgg13,363.69,703.869,256,224,11.31,12.25,133.05,69.926,89.246
33+
vgg13_bn,315.85,810.498,256,224,11.33,12.25,133.05,71.594,90.376
34+
vgg16,302.84,845.295,256,224,15.47,13.56,138.36,71.59,90.382
35+
vgg16_bn,265.99,962.41,256,224,15.5,13.56,138.37,73.35,91.504
36+
vgg19,259.82,985.288,256,224,19.63,14.86,143.67,72.366,90.87
37+
vgg19_bn,229.77,1114.113,256,224,19.66,14.86,143.68,74.214,91.848
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count
2+
simplenetv1_small_m1_075,2632.69,97.222,256,224,0.76,1.49,3.29
3+
simplenetv1_small_m2_075,2276.71,112.424,256,224,0.96,1.71,3.29
4+
simplenetv1_5m_m1,2122.88,120.574,256,224,1.35,1.98,5.75
5+
vit_tiny_r_s16_p8_224,2114.01,121.08,256,224,0.44,2.06,6.34
6+
simplenetv1_5m_m2,1808.81,141.512,256,224,1.69,2.28,5.75
7+
regnetx_006,1569.23,163.12,256,224,0.61,3.98,6.2
8+
resnet18,1564.65,163.594,256,224,1.82,2.48,11.69
9+
resnet34,975.71,262.351,256,224,3.67,3.74,21.8
10+
tf_mobilenetv3_large_minimal_100,943.92,271.189,256,224,0.22,4.4,3.92
11+
deit_tiny_patch16_224,921.07,277.916,256,224,1.26,5.97,5.72
12+
simplenetv1_9m_m1,915.22,279.692,256,224,2.78,3.28,9.51
13+
resnet26,835.45,306.402,256,224,2.36,7.35,16.0
14+
dla34,815.16,314.023,256,224,3.07,5.02,15.74
15+
simplenetv1_9m_m2,803.52,318.578,256,224,3.56,3.73,9.51
16+
tf_mobilenetv3_large_075,798.98,320.387,256,224,0.16,4.0,3.99
17+
repvgg_b0,772.16,331.514,256,224,3.41,6.15,15.82
18+
ghostnet_100,740.79,345.555,256,224,0.15,3.55,5.18
19+
mobilenetv3_large_100,717.75,356.649,256,224,0.23,4.41,5.48
20+
tf_mobilenetv3_large_100,695.46,368.08,256,224,0.23,4.41,5.48
21+
mobilenetv2_100,624.46,409.93,256,224,0.31,6.68,3.5
22+
tinynet_b,613.99,416.926,256,188,0.21,4.44,3.73
23+
crossvit_9_240,576.43,444.093,256,240,1.85,9.52,8.55
24+
mnasnet_100,522.9,489.551,256,224,0.33,5.46,4.38
25+
vit_base_patch32_224_sam,508.95,502.975,256,224,4.41,5.01,88.22
26+
vgg11,487.59,525.002,256,224,7.61,7.44,132.86
27+
densenet121,461.35,554.857,256,224,2.87,6.9,7.98
28+
vgg11_bn,454.48,563.254,256,224,7.62,7.44,132.87
29+
mobilenetv2_110d,451.89,566.488,256,224,0.45,8.71,4.52
30+
efficientnet_lite0,428.07,598.004,256,224,0.4,6.74,4.65
31+
tf_efficientnet_lite0,414.3,617.891,256,224,0.4,6.74,4.65
32+
vgg13,298.11,858.716,256,224,11.31,12.25,133.05
33+
vgg13_bn,277.48,922.559,256,224,11.33,12.25,133.05
34+
vgg16,254.87,1004.418,256,224,15.47,13.56,138.36
35+
vgg16_bn,238.54,1073.189,256,224,15.5,13.56,138.37
36+
vgg19,224.34,1141.111,256,224,19.63,14.86,143.67
37+
vgg19_bn,212.07,1207.101,256,224,19.66,14.86,143.68
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count,top1,top5
2+
simplenetv1_small_m1_075,2632.69,97.222,256,224,0.76,1.49,3.29,67.784,87.718
3+
simplenetv1_small_m2_075,2276.71,112.424,256,224,0.96,1.71,3.29,68.506,88.15
4+
simplenetv1_5m_m1,2122.88,120.574,256,224,1.35,1.98,5.75,71.548,89.94
5+
vit_tiny_r_s16_p8_224,2114.01,121.08,256,224,0.44,2.06,6.34,71.792,90.822
6+
simplenetv1_5m_m2,1808.81,141.512,256,224,1.69,2.28,5.75,72.03,90.324
7+
regnetx_006,1569.23,163.12,256,224,0.61,3.98,6.2,73.86,91.672
8+
resnet18,1564.65,163.594,256,224,1.82,2.48,11.69,69.744,89.082
9+
resnet34,975.71,262.351,256,224,3.67,3.74,21.8,75.114,92.284
10+
tf_mobilenetv3_large_minimal_100,943.92,271.189,256,224,0.22,4.4,3.92,72.25,90.63
11+
deit_tiny_patch16_224,921.07,277.916,256,224,1.26,5.97,5.72,72.172,91.114
12+
simplenetv1_9m_m1,915.22,279.692,256,224,2.78,3.28,9.51,73.792,91.486
13+
resnet26,835.45,306.402,256,224,2.36,7.35,16.0,75.3,92.578
14+
dla34,815.16,314.023,256,224,3.07,5.02,15.74,74.62,92.072
15+
simplenetv1_9m_m2,803.52,318.578,256,224,3.56,3.73,9.51,74.23,91.748
16+
tf_mobilenetv3_large_075,798.98,320.387,256,224,0.16,4.0,3.99,73.436,91.344
17+
repvgg_b0,772.16,331.514,256,224,3.41,6.15,15.82,75.16,92.418
18+
ghostnet_100,740.79,345.555,256,224,0.15,3.55,5.18,73.974,91.46
19+
mobilenetv3_large_100,717.75,356.649,256,224,0.23,4.41,5.48,75.766,92.544
20+
tf_mobilenetv3_large_100,695.46,368.08,256,224,0.23,4.41,5.48,75.518,92.604
21+
mobilenetv2_100,624.46,409.93,256,224,0.31,6.68,3.5,72.97,91.02
22+
tinynet_b,613.99,416.926,256,188,0.21,4.44,3.73,74.976,92.184
23+
crossvit_9_240,576.43,444.093,256,240,1.85,9.52,8.55,73.96,91.968
24+
mnasnet_100,522.9,489.551,256,224,0.33,5.46,4.38,74.658,92.112
25+
vit_base_patch32_224_sam,508.95,502.975,256,224,4.41,5.01,88.22,73.694,91.01
26+
vgg11,487.59,525.002,256,224,7.61,7.44,132.86,69.028,88.626
27+
densenet121,461.35,554.857,256,224,2.87,6.9,7.98,75.584,92.652
28+
vgg11_bn,454.48,563.254,256,224,7.62,7.44,132.87,70.36,89.802
29+
mobilenetv2_110d,451.89,566.488,256,224,0.45,8.71,4.52,75.038,92.184
30+
efficientnet_lite0,428.07,598.004,256,224,0.4,6.74,4.65,75.476,92.512
31+
tf_efficientnet_lite0,414.3,617.891,256,224,0.4,6.74,4.65,74.832,92.174
32+
vgg13,298.11,858.716,256,224,11.31,12.25,133.05,69.926,89.246
33+
vgg13_bn,277.48,922.559,256,224,11.33,12.25,133.05,71.594,90.376
34+
vgg16,254.87,1004.418,256,224,15.47,13.56,138.36,71.59,90.382
35+
vgg16_bn,238.54,1073.189,256,224,15.5,13.56,138.37,73.35,91.504
36+
vgg19,224.34,1141.111,256,224,19.63,14.86,143.67,72.366,90.87
37+
vgg19_bn,212.07,1207.101,256,224,19.66,14.86,143.68,74.214,91.848
Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count
2+
vit_tiny_r_s16_p8_224,1880.84,136.09,256,224,0.44,2.06,6.34
3+
simplenetv1_small_m1_075,1585.06,161.491,256,224,0.76,1.49,3.29
4+
simplenetv1_small_m2_075,1303.45,196.384,256,224,0.96,1.71,3.29
5+
simplenetv1_5m_m1,1182.83,216.412,256,224,1.35,1.98,5.75
6+
deit_tiny_patch16_224,988.98,258.833,256,224,1.26,5.97,5.72
7+
simplenetv1_5m_m2,877.27,291.797,256,224,1.69,2.28,5.75
8+
resnet18,873.32,293.112,256,224,1.82,2.48,11.69
9+
crossvit_9_240,600.23,426.481,256,240,1.85,9.52,8.55
10+
vit_base_patch32_224_sam,568.15,450.56,256,224,4.41,5.01,88.22
11+
tinynet_b,526.6,486.118,256,188,0.21,4.44,3.73
12+
resnet26,525.93,486.735,256,224,2.36,7.35,16.0
13+
tf_mobilenetv3_large_075,501.4,510.547,256,224,0.16,4.0,3.99
14+
resnet34,491.53,520.806,256,224,3.67,3.74,21.8
15+
simplenetv1_9m_m1,479.06,534.361,256,224,2.78,3.28,9.51
16+
regnetx_006,477.32,536.307,256,224,0.61,3.98,6.2
17+
dla34,469.89,544.784,256,224,3.07,5.02,15.74
18+
repvgg_b0,453.58,564.372,256,224,3.41,6.15,15.82
19+
ghostnet_100,405.05,632.006,256,224,0.15,3.55,5.18
20+
simplenetv1_9m_m2,402.67,635.734,256,224,3.56,3.73,9.51
21+
tf_mobilenetv3_large_minimal_100,402.04,636.729,256,224,0.22,4.4,3.92
22+
mobilenetv3_large_100,397.73,643.626,256,224,0.23,4.41,5.48
23+
tf_mobilenetv3_large_100,383.01,668.367,256,224,0.23,4.41,5.48
24+
mobilenetv2_100,293.62,871.86,256,224,0.31,6.68,3.5
25+
densenet121,293.49,872.248,256,224,2.87,6.9,7.98
26+
mnasnet_100,260.29,983.481,256,224,0.33,5.46,4.38
27+
vgg11,259.27,987.367,256,224,7.61,7.44,132.86
28+
vgg11_bn,247.67,516.792,128,224,7.62,7.44,132.87
29+
mobilenetv2_110d,229.73,1114.341,256,224,0.45,8.71,4.52
30+
efficientnet_lite0,223.31,1146.379,256,224,0.4,6.74,4.65
31+
tf_efficientnet_lite0,218.86,1169.677,256,224,0.4,6.74,4.65
32+
vgg13,151.9,842.666,128,224,11.31,12.25,133.05
33+
vgg13_bn,142.62,897.488,128,224,11.33,12.25,133.05
34+
vgg16,122.08,1048.441,128,224,15.47,13.56,138.36
35+
vgg16_bn,115.59,1107.345,128,224,15.5,13.56,138.37
36+
vgg19,101.94,1255.594,128,224,19.63,14.86,143.67
37+
vgg19_bn,97.15,1317.532,128,224,19.66,14.86,143.68

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /