Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 52dc779

Browse files
committed
update latest changes in readme
1 parent 3370d81 commit 52dc779

File tree

1 file changed

+65
-62
lines changed

1 file changed

+65
-62
lines changed

‎README.md

Lines changed: 65 additions & 62 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,9 @@ The pytorch implementation is also very effieicent and the whole model takes onl
1818
#### Update History:
1919

2020
<pre>
21+
-- 2023 Apr 13:
22+
-- new weights for the removed paddings for 1x1 conv layers.
23+
-- some minor fixes
2124
-- 2023 Feb 12:
2225
-- re-structured the repository, moving the old implementation into new directory named 'Cifar` and imagenet into its respective directory
2326
-- updated the old implementation to work with latest version of pytorch.
@@ -33,12 +36,12 @@ The original Caffe implementation can be found here : [Original Caffe implementa
3336

3437
#### ImageNet Result:
3538

36-
| **Method** | **\#Params** | **ImageNet** | **ImageNet-Real-Labels** |
37-
| :--------------------------- | :----------: | :-----------: |:-----------: |
38-
| SimpleNetV1_imagenet(36.33 MB) | 9.5m | 74.17/91.614 |81.24/94.63 |
39-
| SimpleNetV1_imagenet(21.9 MB) | 5.7m | 71.936/90.3 |79.12/93.68 |
40-
| SimpleNetV1_imagenet(12.58 MB)| 3m | 68.15/87.762 | 75.66/91.80 |
41-
| SimpleNetV1_imagenet(5.78 MB) | 1.5m | 61.524/83.43 |69.11/88.10 |
39+
| **Model** | **\#Params** | **ImageNet** | **ImageNet-Real-Labels** |
40+
| :--------------------------- | :----------: | :-----------: |:------------------: |
41+
| simplenetv1_9m_m2(36.3 MB) | 9.5m | 74.23 / 91.748 |81.22 / 94.756 |
42+
| simplenetv1_5m_m2(22 MB) | 5.7m | 72.03 / 90.324 |79.328/ 93.714 |
43+
| simplenetv1_small_m2_075(12.6 MB)| 3m | 68.506/ 88.15 | 76.283/ 92.02 |
44+
| simplenetv1_small_m2_05(5.78 MB) | 1.5m | 61.67 / 83.488 |69.31 / 88.195 |
4245

4346
SimpleNet performs very decently, it outperforms VGGNet, variants of ResNet and MobileNets(1-3)
4447
and its pretty fast as well! and its all using plain old CNN!.
@@ -48,65 +51,65 @@ Small variants of simplenet consistently achieve high performance/accuracy:
4851

4952
| model | samples_per_sec | param_count | top1 | top5 |
5053
|:----------------------------------| :--------------: | :-----------: | :--: | :---: |
51-
|mobilenetv3_small_050 | 3035.37 | 1.59 | 57.89 | 80.194 |
52-
|**simplenetv1_small_m1_05** | 2839.35 | 1.51 | **60.89**|**82.978**|
53-
|lcnet_050 | 2683.57 | 1.88 | 63.1 | 84.382 |
54-
|**simplenetv1_small_m2_05** | 2340.51 | 1.51 |**61.524**|**83.432**|
55-
|mobilenetv3_small_075 | 1781.14 | 2.04 | 65.242 | 85.438 |
56-
|tf_mobilenetv3_small_075 | 1674.31 | 2.04 | 65.714 | 86.134 |
57-
|**simplenetv1_small_m1_075** | 1524.64 | 3.29 |**67.764**|**87.66** |
58-
|tf_mobilenetv3_small_minimal_100 | 1308.27 | 2.04 | 62.908 | 84.234 |
59-
|**simplenetv1_small_m2_075** | 1264.33 | 3.29 |**68.15**|**87.762**|
60-
|mobilenetv3_small_100 | 1263.23 | 2.54 | 67.656 | 87.634 |
61-
|tf_mobilenetv3_small_100 | 1220.08 | 2.54 | 67.924 | 87.664 |
62-
|mnasnet_small | 1085.15 | 2.03 | 66.206 | 86.508 |
63-
|mobilenetv2_050 | 848.38 | 1.97 | 65.942 | 86.082 |
64-
|dla46_c | 531.0 | 1.3 | 64.866 | 86.294 |
65-
|dla46x_c | 318.32 | 1.07 | 65.97 | 86.98 |
66-
|dla60x_c | 298.59 | 1.32 | 67.892 | 88.426 |
54+
|simplenetv1_small_m1_05 | 3100.26 | 1.51 | 61.122 | 82.988 |
55+
|mobilenetv3_small_050 | 3082.85 | 1.59 | 57.89| 80.194 |
56+
|lcnet_050 | 2713.02 | 1.88 | 63.1 | 84.382 |
57+
|simplenetv1_small_m2_05 | 2536.16 | 1.51 |61.67 |83.488 |
58+
|mobilenetv3_small_075 | 1793.42 | 2.04 | 65.242 | 85.438 |
59+
|tf_mobilenetv3_small_075 | 1689.53 | 2.04 | 65.714 | 86.134 |
60+
|simplenetv1_small_m1_075 | 1626.87 | 3.29 |67.784 |87.718 |
61+
|tf_mobilenetv3_small_minimal_100 | 1316.91 | 2.04 | 62.908 | 84.234 |
62+
|simplenetv1_small_m2_075 | 1313.6 | 3.29 |68.506 | 88.15 |
63+
|mobilenetv3_small_100 | 1261.09 | 2.54 | 67.656 | 87.634 |
64+
|tf_mobilenetv3_small_100 | 1213.03 | 2.54 | 67.924 | 87.664 |
65+
|mnasnet_small | 1089.33 | 2.03 | 66.206 | 86.508 |
66+
|mobilenetv2_050 | 857.66 | 1.97 | 65.942 | 86.082 |
67+
|dla46_c | 537.08 | 1.3 | 64.866 | 86.294 |
68+
|dla46x_c | 323.03 | 1.07 | 65.97 | 86.98 |
69+
|dla60x_c | 301.71 | 1.32 | 67.892 | 88.426 |
6770

6871
and this is a sample for larger models: simplenet variants outperform many newer architecures.
6972

70-
| model | samples_per_sec | param_count | top1 | top5 |
71-
|:----------------------------------| :--------------: | :-----------: | :--: | :---: |
72-
| vit_tiny_r_s16_p8_224 | 1882.23 | 6.34 | 71.792 | 90.822 |
73-
| simplenetv1_small_m1_075 | 1516.74 | 3.29 | 67.764 | 87.660 |
74-
| simplenetv1_small_m2_075 | 1260.89 | 3.29 | 68.150 | 87.762 |
75-
| simplenetv1_5m_m1 | 1107.70 | 5.75 | 71.370 | 90.100 |
76-
| deit_tiny_patch16_224 | 991.41 | 5.72 | 72.172 | 91.114 |
77-
| resnet18 | 876.92 | 11.69 | 69.744 | 89.082 |
78-
| simplenetv1_5m_m2 | 835.17 | 5.75 | 71.936 | 90.300 |
79-
| crossvit_9_240 | 602.13 | 8.55 | 73.960 | 91.968 |
80-
| vit_base_patch32_224_sam | 571.37 | 88.22 | 73.694 | 91.010 |
81-
| tinynet_b | 530.15 | 3.73 | 74.976 | 92.184 |
82-
| resnet26 | 524.36 | 16.00 | 75.300 | 92.578 |
83-
| tf_mobilenetv3_large_075 | 505.13 | 3.99 | 73.436 | 91.344 |
84-
| resnet34 | 491.96 | 21.80 |75.114 | 92.284 |
85-
| regnetx_006 | 478.41 | 6.20 | 73.860 | 91.672 |
86-
| dla34 | 472.49 | 15.74 | 74.620 | 92.072 |
87-
| simplenetv1_9m_m1 | 459.21 | 9.51 | 73.376 | 91.048 |
88-
| repvgg_b0 | 455.36 | 15.82 | 75.160 | 92.418 |
89-
| ghostnet_100 | 407.03 | 5.18 | 73.974 | 91.460 |
90-
| tf_mobilenetv3_large_minimal_100 | 406.84 | 3.92 | 72.250 | 90.630 |
91-
| mobilenetv3_large_100 | 402.08 | 5.48 | 75.766 | 92.544 |
92-
| simplenetv1_9m_m2 | 389.94 | 9.51 | 74.170 | 91.614 |
93-
| tf_mobilenetv3_large_100 | 388.30 | 5.48 | 75.518 | 92.604 |
94-
| mobilenetv2_100 | 295.68 | 3.50 | 72.970 | 91.020 |
95-
| densenet121 | 293.94 | 7.98 | 75.584 | 92.652 |
96-
| mnasnet_100 | 262.25 | 4.38 | 74.658 | 92.112 |
97-
| vgg11 | 260.38 | 132.86 | 69.028 | 88.626 |
98-
| vgg11_bn | 248.92 | 132.87 | 70.360 | 89.802 |
99-
| mobilenetv2_110d | 230.80 | 4.52 | 75.038 | 92.184 |
100-
| efficientnet_lite0 | 224.81 | 4.65 | 75.476 | 92.512 |
101-
| tf_efficientnet_lite0 | 219.93 | 4.65 | 74.832 | 92.174 |
102-
| vgg13 | 154.03 | 133.05 | 69.926 | 89.246 |
103-
| vgg13_bn | 144.39 | 133.05 | 71.594 | 90.376 |
104-
| vgg16 | 123.70 | 138.36 | 71.590 | 90.382 |
105-
| vgg16_bn | 117.06 | 138.37 | 73.350 | 91.504 |
106-
| vgg19 | 103.71 | 143.67 | 72.366 | 90.870 |
107-
| vgg19_bn | 98.59 | 143.68 | 74.214 | 91.848 |
108-
109-
Benchmark was done using a GTX1080 on Pytorch 1.11 with fp32, nhwc, batchsize of 256, input size = `224x224x3`.
73+
| model | samples_per_sec | param_count | top1 | top5 |
74+
|:----------------------------------| :--------------: | :-----------: | :----: | :----: |
75+
| simplenetv1_small_m1_075 | 3036.82 | 3.29 | 67.784 | 87.718 |
76+
| simplenetv1_small_m2_075 | 2589.4 | 3.29 | 68.506 | 88.15 |
77+
| vit_tiny_r_s16_p8_224 | 2419.27 | 6.34 | 71.792 | 90.822 |
78+
| simplenetv1_5m_m1 | 2204.86 | 5.75 | 71.548 | 89.94 |
79+
| resnet18 | 1824.39 | 11.69 | 69.744 | 89.082 |
80+
| simplenetv1_5m_m2 | 1821.86 | 5.75 | 72.03 | 90.324 |
81+
| regnetx_006 | 1710.9 | 6.2 | 73.86 | 91.672 |
82+
| mobilenetv3_large_100 | 1568.72 | 5.48 | 75.766 | 92.544 |
83+
| tf_mobilenetv3_large_minimal_100 | 1564.4 | 3.92 | 72.25 | 90.63 |
84+
| tf_mobilenetv3_large_075 | 1560.84 | 3.99 | 73.436 | 91.344 |
85+
| ghostnet_100 | 1447.97 | 5.18 | 73.974 | 91.46 |
86+
| tinynet_b | 1413.59 | 3.73 | 74.976 | 92.184 |
87+
| tf_mobilenetv3_large_100 | 1396.66 | 5.48 | 75.518 | 92.604 |
88+
| mnasnet_100 | 1238.11 | 4.38 | 74.658 | 92.112 |
89+
| mobilenetv2_100 | 1158.3 | 3.5 | 72.97 | 91.02 |
90+
| simplenetv1_9m_m1 | 1089.47 | 9.51 | 73.792 | 91.486 |
91+
| resnet34 | 1071.63 | 21.8 | 75.114 | 92.284 |
92+
| efficientnet_lite0 | 1020.15 | 4.65 | 75.476 | 92.512 |
93+
| deit_tiny_patch16_224 | 1007.63 | 5.72 | 72.172 | 91.114 |
94+
| simplenetv1_9m_m2 | 933.93 | 9.51 | 74.23 | 91.748 |
95+
| tf_efficientnet_lite0 | 920.71 | 4.65 | 74.832 | 92.174 |
96+
| dla34 | 871.88 | 15.74 | 74.62 | 92.072 |
97+
| mobilenetv2_110d | 867.18 | 4.52 | 75.038 | 92.184 |
98+
| resnet26 | 809.01 | 16 | 75.3 | 92.578 |
99+
| repvgg_b0 | 788.45 | 15.82 | 75.16 | 92.418 |
100+
| crossvit_9_240 | 618.98 | 8.55 | 73.96 | 91.968 |
101+
| vgg11 | 602.05 | 132.86 | 69.028 | 88.626 |
102+
| vgg11_bn | 522.94 | 132.87 | 70.36 | 89.802 |
103+
| vit_base_patch32_224_sam | 514.09 | 88.22 | 73.694 | 91.01 |
104+
| densenet121 | 460.65 | 7.98 | 75.584 | 92.652 |
105+
| vgg13 | 373.71 | 133.05 | 69.926 | 89.246 |
106+
| vgg13_bn | 326.26 | 133.05 | 71.594 | 90.376 |
107+
| vgg16 | 312.99 | 138.36 | 71.59 | 90.382 |
108+
| vgg16_bn | 276.35 | 138.37 | 73.35 | 91.504 |
109+
| vgg19 | 269.28 | 143.67 | 72.366 | 90.87 |
110+
| vgg19_bn | 239.6 | 143.68 | 74.214 | 91.848 |
111+
112+
Benchmark was done using a GTX1080 on Pytorch 1.11 with fp32, nchw, batchsize of 256, input size = `224x224x3`.
110113
For all benchmark results [look here](https://github.com/Coderx7/SimpleNet_Pytorch/tree/master/ImageNet/training_scripts/imagenet_training/results)
111114

112115
-- The models pretrained weights (pytorch, onnx, jit) can be found in [Release section](https://github.com/Coderx7/SimpleNet_Pytorch/releases)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /