- 安装好bazel代码构建工具,clone下来tensorflow项目代码,配置好(./configure)
- clone 本项目地址到tensorflow同级目录,切换到本项目代码目录,运行./configure
- 编译后台服务
bazel build //kcws/cc:seg_backend_api
-
关注待字闺中公众号 回复 kcws 获取语料下载地址: alt text
-
解压语料到一个目录
-
切换到代码目录,运行:
pyton kcws/train/process_anno_file <语料目录> chars_for_w2v.txt
使用word2vec 训练 chars_for_w2v (注意-binary 0),得到字嵌入结果vec.txt
bazel build kcws/train:generate_training
./bazel-bin/kcws/train/generate_training vec.txt <语料目录> all.txt
python kcws/train/filter_sentence.py all.txt (得到train.txt , test.txt)
- 安装好tensorflow,切换到kcws代码目录,运行:
python kcws/train/train_cws_lstm.py --word2vec_path vec.txt --train_data_path <绝对路径到train.txt> --test_data_path test.txt --max_sentence_len 80 --learning_rate 0.001