Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

BioGenies/tidysq

Repository files navigation

tidysq

CRAN_Status_Badge Github Actions Build Status Lifecycle: experimental

Overview

tidysq contains tools for analysis and manipulation of biological sequences (including amino acid and nucleic acid – e.g. RNA, DNA – sequences). Two major features of this package are:

  • effective compression of sequence data, allowing to fit larger datasets in R,

  • compatibility with most of tidyverse universe, especially dplyr and vctrs packages, making analyses tidier.

Getting started

Try our quick start vignette or our exhaustive documentation.

Installation

The easiest way to install tidysq package is to download its latest version from CRAN repository:

install.packages("tidysq")

Alternatively, it is possible to download the development version directly from GitHub repository:

# install.packages("devtools")
devtools::install_github("BioGenies/tidysq")

Example usage

library(tidysq)
×ばつ 2 #> sq name #> <ami_bsc> <chr> #> 1 PGGGKVQIV <13> AMY1|K19|T-Protein (Tau) #> 2 NLKHQPGGG <43> AMY9|K19Gluc41|T-Protein (Tau) #> 3 NLKHQPGGG <19> AMY14|K19Gluc782|T-Protein (Tau) #> 4 GKVQIVYK <8> AMY17|PHF8|T-Protein (Tau) #> 5 VQIVYK <6> AMY18|PHF6|T-Protein (Tau) #> 6 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide #> 7 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide #> 8 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide #> 9 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide #> 10 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide #> # i 411 more rows sq_ami <- sqibble$sq sq_ami #> basic amino acid sequences list: #> [1] PGGGKVQIVYKPV <13> #> [2] NLKHQPGGGKVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVE <43> #> [3] NLKHQPGGGKVQIVYKEVD <19> #> [4] GKVQIVYK <8> #> [5] VQIVYK <6> #> [6] DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV <40> #> [7] VPHQKLVFFAEDVGS <15> #> [8] VHPQKLVFFAEDVGS <15> #> [9] VHHPKLVFFAEDVGS <15> #> [10] VHHQPLVFFAEDVGS <15> #> printed 10 out of 421 # Subsequences can be extracted with bite() bite(sq_ami, 5:10) #> Warning in CPP_bite(x, indices, NA_letter, on_warning): some sequences are #> subsetted with index bigger than length - NA introduced #> basic amino acid sequences list: #> [1] KVQIVY <6> #> [2] QPGGGK <6> #> [3] QPGGGK <6> #> [4] IVYK!! <6> #> [5] YK!!!! <6> #> [6] RHDSGY <6> #> [7] KLVFFA <6> #> [8] KLVFFA <6> #> [9] KLVFFA <6> #> [10] PLVFFA <6> #> printed 10 out of 421 # There are also more traditional functions reverse(sq_ami) #> basic amino acid sequences list: #> [1] VPKYVIQVKGGGP <13> #> [2] EVQGGGPKHHINGLSGCKSTVKSLDVPKYVIQVKGGGPQHKLN <43> #> [3] DVEKYVIQVKGGGPQHKLN <19> #> [4] KYVIQVKG <8> #> [5] KYVIQV <6> #> [6] VVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEAD <40> #> [7] SGVDEAFFVLKQHPV <15> #> [8] SGVDEAFFVLKQPHV <15> #> [9] SGVDEAFFVLKPHHV <15> #> [10] SGVDEAFFVLPQHHV <15> #> printed 10 out of 421 # find_motifs() returns a whole tibble of useful informations find_motifs(sqibble, "^VHX") #> # A tibble: 9 ×ばつ 5 #> names found sought start end #> <chr> <ami_bsc> <chr> <int> <int> #> 1 AMY24|HABP2|Amyloid beta A4 peptide VHP <3> ^VHX 1 3 #> 2 AMY25|HABP3|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 3 AMY26|HABP4|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 4 AMY34|HABP12|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 5 AMY35|HABP13|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 6 AMY36|HABP14|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 7 AMY38|HABP16|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 8 AMY43|AB5|Amyloid beta A4 peptide VHH <3> ^VHX 1 3 #> 9 AMY195|86-95|Prion protein (human) VHD <3> ^VHX 1 3">
file <- system.file("examples", "example_aa.fasta", package = "tidysq")
sqibble <- read_fasta(file)
sqibble
#> # A tibble: 421 ×ばつ 2
#> sq name 
#> <ami_bsc> <chr> 
#> 1 PGGGKVQIV <13> AMY1|K19|T-Protein (Tau) 
#> 2 NLKHQPGGG <43> AMY9|K19Gluc41|T-Protein (Tau) 
#> 3 NLKHQPGGG <19> AMY14|K19Gluc782|T-Protein (Tau) 
#> 4 GKVQIVYK  <8> AMY17|PHF8|T-Protein (Tau) 
#> 5 VQIVYK   <6> AMY18|PHF6|T-Protein (Tau) 
#> 6 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide
#> 7 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide
#> 8 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide
#> 9 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide
#> 10 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide
#> # i 411 more rows
sq_ami <- sqibble$sq
sq_ami
#> basic amino acid sequences list:
#> [1] PGGGKVQIVYKPV                             <13>
#> [2] NLKHQPGGGKVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVE              <43>
#> [3] NLKHQPGGGKVQIVYKEVD                          <19>
#> [4] GKVQIVYK                                <8>
#> [5] VQIVYK                                 <6>
#> [6] DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV                <40>
#> [7] VPHQKLVFFAEDVGS                            <15>
#> [8] VHPQKLVFFAEDVGS                            <15>
#> [9] VHHPKLVFFAEDVGS                            <15>
#> [10] VHHQPLVFFAEDVGS                            <15>
#> printed 10 out of 421
# Subsequences can be extracted with bite()
bite(sq_ami, 5:10)
#> Warning in CPP_bite(x, indices, NA_letter, on_warning): some sequences are
#> subsetted with index bigger than length - NA introduced
#> basic amino acid sequences list:
#> [1] KVQIVY                                 <6>
#> [2] QPGGGK                                 <6>
#> [3] QPGGGK                                 <6>
#> [4] IVYK!!                                 <6>
#> [5] YK!!!!                                 <6>
#> [6] RHDSGY                                 <6>
#> [7] KLVFFA                                 <6>
#> [8] KLVFFA                                 <6>
#> [9] KLVFFA                                 <6>
#> [10] PLVFFA                                 <6>
#> printed 10 out of 421
# There are also more traditional functions
reverse(sq_ami)
#> basic amino acid sequences list:
#> [1] VPKYVIQVKGGGP                             <13>
#> [2] EVQGGGPKHHINGLSGCKSTVKSLDVPKYVIQVKGGGPQHKLN              <43>
#> [3] DVEKYVIQVKGGGPQHKLN                          <19>
#> [4] KYVIQVKG                                <8>
#> [5] KYVIQV                                 <6>
#> [6] VVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEAD                <40>
#> [7] SGVDEAFFVLKQHPV                            <15>
#> [8] SGVDEAFFVLKQPHV                            <15>
#> [9] SGVDEAFFVLKPHHV                            <15>
#> [10] SGVDEAFFVLPQHHV                            <15>
#> printed 10 out of 421
# find_motifs() returns a whole tibble of useful informations
find_motifs(sqibble, "^VHX")
#> # A tibble: 9 ×ばつ 5
#> names found sought start end
#> <chr> <ami_bsc> <chr> <int> <int>
#> 1 AMY24|HABP2|Amyloid beta A4 peptide VHP <3> ^VHX 1 3
#> 2 AMY25|HABP3|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 3 AMY26|HABP4|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 4 AMY34|HABP12|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 5 AMY35|HABP13|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 6 AMY36|HABP14|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 7 AMY38|HABP16|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 8 AMY43|AB5|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 9 AMY195|86-95|Prion protein (human) VHD <3> ^VHX 1 3

An example of dplyr integration:

×ばつ 3 #> sq name length #> <ami_bsc> <chr> <dbl> #> 1 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide 40 #> 2 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide 15 #> 3 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide 15 #> 4 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide 15 #> 5 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide 15 #> 6 KKLVFFPED <9> AMY32|HABP10|Amyloid beta A4 peptide 9 #> 7 VHHQEKLVF <16> AMY34|HABP12|Amyloid beta A4 peptide 16 #> 8 VHHQEKLVF <16> AMY35|HABP13|Amyloid beta A4 peptide 16 #> 9 VHHQEKLVF <16> AMY36|HABP14|Amyloid beta A4 peptide 16 #> 10 KKLVFFAED <9> AMY37|HABP15|Amyloid beta A4 peptide 9 #> # i 14 more rows">
library(dplyr)
# tidysq integrates well with dplyr verbs
sqibble %>%
 filter(sq %has% "VFF") %>%
 mutate(length = get_sq_lengths(sq))
#> # A tibble: 24 ×ばつ 3
#> sq name length
#> <ami_bsc> <chr> <dbl>
#> 1 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide 40
#> 2 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide 15
#> 3 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide 15
#> 4 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide 15
#> 5 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide 15
#> 6 KKLVFFPED <9> AMY32|HABP10|Amyloid beta A4 peptide 9
#> 7 VHHQEKLVF <16> AMY34|HABP12|Amyloid beta A4 peptide 16
#> 8 VHHQEKLVF <16> AMY35|HABP13|Amyloid beta A4 peptide 16
#> 9 VHHQEKLVF <16> AMY36|HABP14|Amyloid beta A4 peptide 16
#> 10 KKLVFFAED <9> AMY37|HABP15|Amyloid beta A4 peptide 9
#> # i 14 more rows

Citation

For citation type:

citation("tidysq")

or use:

Michal Burdukiewicz, Dominik Rafacz, Laura Bakala, Jadwiga Slowik, Weronika Puchala, Filip Pietluch, Katarzyna Sidorczuk, Stefan Roediger and Leon Eyrich Jessen (2021). tidysq: Tidy Processing and Analysis of Biological Sequences. R package version 1.1.3.

AltStyle によって変換されたページ (->オリジナル) /