forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
[pull] master from TheAlgorithms:master #222
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
240 changes: 240 additions & 0 deletions
src/bit_manipulation/is_power_of_two.rs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,240 @@ | ||
| //! Power of Two Check | ||
| //! | ||
| //! This module provides a function to determine if a given positive integer is a power of two | ||
| //! using efficient bit manipulation. | ||
| //! | ||
| //! # Algorithm | ||
| //! | ||
| //! The algorithm uses the property that powers of two have exactly one bit set in their | ||
| //! binary representation. When we subtract 1 from a power of two, all bits after the single | ||
| //! set bit become 1, and the set bit becomes 0: | ||
| //! | ||
| //! ```text | ||
| //! n = 0..100..00 (power of 2) | ||
| //! n - 1 = 0..011..11 | ||
| //! n & (n - 1) = 0 (no intersections) | ||
| //! ``` | ||
| //! | ||
| //! For example: | ||
| //! - 8 in binary: 1000 | ||
| //! - 7 in binary: 0111 | ||
| //! - 8 & 7 = 0000 = 0 ✓ | ||
| //! | ||
| //! Author: Alexander Pantyukhin | ||
| //! Date: November 1, 2022 | ||
|
|
||
| /// Determines if a given number is a power of two. | ||
| /// | ||
| /// This function uses bit manipulation to efficiently check if a number is a power of two. | ||
| /// A number is a power of two if it has exactly one bit set in its binary representation. | ||
| /// The check `number & (number - 1) == 0` leverages this property. | ||
| /// | ||
| /// # Arguments | ||
| /// | ||
| /// * `number` - An integer to check (must be non-negative) | ||
| /// | ||
| /// # Returns | ||
| /// | ||
| /// A `Result` containing: | ||
| /// - `Ok(true)` - If the number is a power of two (including 0 and 1) | ||
| /// - `Ok(false)` - If the number is not a power of two | ||
| /// - `Err(String)` - If the number is negative | ||
| /// | ||
| /// # Examples | ||
| /// | ||
| /// ``` | ||
| /// use the_algorithms_rust::bit_manipulation::is_power_of_two; | ||
| /// | ||
| /// assert_eq!(is_power_of_two(0).unwrap(), true); | ||
| /// assert_eq!(is_power_of_two(1).unwrap(), true); | ||
| /// assert_eq!(is_power_of_two(2).unwrap(), true); | ||
| /// assert_eq!(is_power_of_two(4).unwrap(), true); | ||
| /// assert_eq!(is_power_of_two(8).unwrap(), true); | ||
| /// assert_eq!(is_power_of_two(16).unwrap(), true); | ||
| /// | ||
| /// assert_eq!(is_power_of_two(3).unwrap(), false); | ||
| /// assert_eq!(is_power_of_two(6).unwrap(), false); | ||
| /// assert_eq!(is_power_of_two(17).unwrap(), false); | ||
| /// | ||
| /// // Negative numbers return an error | ||
| /// assert!(is_power_of_two(-1).is_err()); | ||
| /// ``` | ||
| /// | ||
| /// # Errors | ||
| /// | ||
| /// Returns an error if the input number is negative. | ||
| /// | ||
| /// # Time Complexity | ||
| /// | ||
| /// O(1) - The function performs a constant number of operations regardless of input size. | ||
| pub fn is_power_of_two(number: i32) -> Result<bool, String> { | ||
| if number < 0 { | ||
| return Err("number must not be negative".to_string()); | ||
| } | ||
|
|
||
| // Convert to u32 for safe bit operations | ||
| let num = number as u32; | ||
|
|
||
| // Check if number & (number - 1) == 0 | ||
| // For powers of 2, this will always be true | ||
| Ok(num & num.wrapping_sub(1) == 0) | ||
| } | ||
|
|
||
| #[cfg(test)] | ||
| mod tests { | ||
| use super::*; | ||
|
|
||
| #[test] | ||
| fn test_zero() { | ||
| // 0 is considered a power of 2 by the algorithm (2^(-∞) interpretation) | ||
| assert!(is_power_of_two(0).unwrap()); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_one() { | ||
| // 1 = 2^0 | ||
| assert!(is_power_of_two(1).unwrap()); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_powers_of_two() { | ||
| assert!(is_power_of_two(2).unwrap()); // 2^1 | ||
| assert!(is_power_of_two(4).unwrap()); // 2^2 | ||
| assert!(is_power_of_two(8).unwrap()); // 2^3 | ||
| assert!(is_power_of_two(16).unwrap()); // 2^4 | ||
| assert!(is_power_of_two(32).unwrap()); // 2^5 | ||
| assert!(is_power_of_two(64).unwrap()); // 2^6 | ||
| assert!(is_power_of_two(128).unwrap()); // 2^7 | ||
| assert!(is_power_of_two(256).unwrap()); // 2^8 | ||
| assert!(is_power_of_two(512).unwrap()); // 2^9 | ||
| assert!(is_power_of_two(1024).unwrap()); // 2^10 | ||
| assert!(is_power_of_two(2048).unwrap()); // 2^11 | ||
| assert!(is_power_of_two(4096).unwrap()); // 2^12 | ||
| assert!(is_power_of_two(8192).unwrap()); // 2^13 | ||
| assert!(is_power_of_two(16384).unwrap()); // 2^14 | ||
| assert!(is_power_of_two(32768).unwrap()); // 2^15 | ||
| assert!(is_power_of_two(65536).unwrap()); // 2^16 | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_non_powers_of_two() { | ||
| assert!(!is_power_of_two(3).unwrap()); | ||
| assert!(!is_power_of_two(5).unwrap()); | ||
| assert!(!is_power_of_two(6).unwrap()); | ||
| assert!(!is_power_of_two(7).unwrap()); | ||
| assert!(!is_power_of_two(9).unwrap()); | ||
| assert!(!is_power_of_two(10).unwrap()); | ||
| assert!(!is_power_of_two(11).unwrap()); | ||
| assert!(!is_power_of_two(12).unwrap()); | ||
| assert!(!is_power_of_two(13).unwrap()); | ||
| assert!(!is_power_of_two(14).unwrap()); | ||
| assert!(!is_power_of_two(15).unwrap()); | ||
| assert!(!is_power_of_two(17).unwrap()); | ||
| assert!(!is_power_of_two(18).unwrap()); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_specific_non_powers() { | ||
| assert!(!is_power_of_two(6).unwrap()); | ||
| assert!(!is_power_of_two(17).unwrap()); | ||
| assert!(!is_power_of_two(100).unwrap()); | ||
| assert!(!is_power_of_two(1000).unwrap()); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_large_powers_of_two() { | ||
| assert!(is_power_of_two(131072).unwrap()); // 2^17 | ||
| assert!(is_power_of_two(262144).unwrap()); // 2^18 | ||
| assert!(is_power_of_two(524288).unwrap()); // 2^19 | ||
| assert!(is_power_of_two(1048576).unwrap()); // 2^20 | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_numbers_near_powers_of_two() { | ||
| // One less than powers of 2 | ||
| assert!(!is_power_of_two(3).unwrap()); // 2^2 - 1 | ||
| assert!(!is_power_of_two(7).unwrap()); // 2^3 - 1 | ||
| assert!(!is_power_of_two(15).unwrap()); // 2^4 - 1 | ||
| assert!(!is_power_of_two(31).unwrap()); // 2^5 - 1 | ||
| assert!(!is_power_of_two(63).unwrap()); // 2^6 - 1 | ||
| assert!(!is_power_of_two(127).unwrap()); // 2^7 - 1 | ||
| assert!(!is_power_of_two(255).unwrap()); // 2^8 - 1 | ||
|
|
||
| // One more than powers of 2 | ||
| assert!(!is_power_of_two(3).unwrap()); // 2^1 + 1 | ||
| assert!(!is_power_of_two(5).unwrap()); // 2^2 + 1 | ||
| assert!(!is_power_of_two(9).unwrap()); // 2^3 + 1 | ||
| assert!(!is_power_of_two(17).unwrap()); // 2^4 + 1 | ||
| assert!(!is_power_of_two(33).unwrap()); // 2^5 + 1 | ||
| assert!(!is_power_of_two(65).unwrap()); // 2^6 + 1 | ||
| assert!(!is_power_of_two(129).unwrap()); // 2^7 + 1 | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_negative_number_returns_error() { | ||
| let result = is_power_of_two(-1); | ||
| assert!(result.is_err()); | ||
| assert_eq!(result.unwrap_err(), "number must not be negative"); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_multiple_negative_numbers() { | ||
| assert!(is_power_of_two(-1).is_err()); | ||
| assert!(is_power_of_two(-2).is_err()); | ||
| assert!(is_power_of_two(-4).is_err()); | ||
| assert!(is_power_of_two(-8).is_err()); | ||
| assert!(is_power_of_two(-100).is_err()); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_all_powers_of_two_up_to_30() { | ||
| // Test 2^0 through 2^30 | ||
| for i in 0..=30 { | ||
| let power = 1u32 << i; // 2^i | ||
| assert!( | ||
| is_power_of_two(power as i32).unwrap(), | ||
| "2^{i} = {power} should be a power of 2" | ||
| ); | ||
| } | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_range_verification() { | ||
| // Test that between consecutive powers of 2, only the powers return true | ||
| for i in 1..10 { | ||
| let power = 1 << i; // 2^i | ||
| assert!(is_power_of_two(power).unwrap()); | ||
|
|
||
| // Check numbers between this power and the next | ||
| let next_power = 1 << (i + 1); | ||
| for num in (power + 1)..next_power { | ||
| assert!( | ||
| !is_power_of_two(num).unwrap(), | ||
| "{num} should not be a power of 2" | ||
| ); | ||
| } | ||
| } | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_bit_manipulation_correctness() { | ||
| // Verify the bit manipulation logic for specific examples | ||
| // For 8: 1000 & 0111 = 0000 ✓ | ||
| assert_eq!(8 & 7, 0); | ||
| assert!(is_power_of_two(8).unwrap()); | ||
|
|
||
| // For 16: 10000 & 01111 = 00000 ✓ | ||
| assert_eq!(16 & 15, 0); | ||
| assert!(is_power_of_two(16).unwrap()); | ||
|
|
||
| // For 6: 110 & 101 = 100 ✗ | ||
| assert_ne!(6 & 5, 0); | ||
| assert!(!is_power_of_two(6).unwrap()); | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_edge_case_max_i32_power_of_two() { | ||
| // Largest power of 2 that fits in i32: 2^30 = 1073741824 | ||
| assert!(is_power_of_two(1073741824).unwrap()); | ||
| } | ||
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.