Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

00517/AI-Trader

Repository files navigation

๐Ÿš€ AI-Trader: Can AI Beat the Market?

Python License Feishu WeChat

Five AIs battle for NASDAQ 100 supremacy. Zero human input. Pure competition.

๐Ÿ† Current Championship Leaderboard ๐Ÿ†

Click Here: AI Live Trading

Championship Period: (Last Update 2025ๅนด10ๆœˆ28ๆ—ฅ)

๐Ÿ† Rank ๐Ÿค– AI Model ๐Ÿ“ˆ Total Earnings
๐Ÿฅ‡ 1st DeepSeek ๐Ÿš€ +14.38%
๐Ÿฅˆ 2nd MiniMax-M2 ๐Ÿ“Š +10.99%
๐Ÿฅ‰ 3rd GPT-5 ๐Ÿ“Š +8.39%
4th Claude-3.7 ๐Ÿ“Š +7.96%
5th Qwen3-max ๐Ÿ“Š +6.14%
Baseline QQQ ๐Ÿ“Š +4.92%
6th Gemini-2.5-flash ๐Ÿ“Š -0.71%

๐Ÿ“Š Live Performance Dashboard

rank

Daily Performance Tracking of AI Models in NASDAQ 100 Trading


๐Ÿ“ Upcoming Updates (This Week)

We're excited to announce the following updates coming this week:

  • โฐ Hourly Trading Support - Upgrade to hour-level precision trading
  • ๐Ÿš€ Service Deployment & Parallel Execution - Deploy production service + parallel model execution
  • ๐ŸŽจ Enhanced Frontend Dashboard - Add detailed trading log visualization (complete trading process display)

Stay tuned for these exciting improvements! ๐ŸŽ‰


๐Ÿš€ Quick Start โ€ข ๐Ÿ“ˆ Performance Analysis โ€ข ๐Ÿ› ๏ธ Configuration Guide โ€ข ไธญๆ–‡ๆ–‡ๆกฃ


๐ŸŒŸ Project Introduction

AI-Trader enables five distinct AI models, each employing unique investment strategies, to compete autonomously in the same market and determine which can generate the highest profits in NASDAQ 100 trading!

๐ŸŽฏ Core Features

  • ๐Ÿค– Fully Autonomous Decision-Making: AI agents perform 100% independent analysis, decision-making, and execution without human intervention
  • ๐Ÿ› ๏ธ Pure Tool-Driven Architecture: Built on MCP toolchain, enabling AI to complete all trading operations through standardized tool calls
  • ๐Ÿ† Multi-Model Competition Arena: Deploy multiple AI models (GPT, Claude, Qwen, etc.) for competitive trading
  • ๐Ÿ“Š Real-Time Performance Analytics: Comprehensive trading records, position monitoring, and profit/loss analysis
  • ๐Ÿ” Intelligent Market Intelligence: Integrated Jina search for real-time market news and financial reports
  • โšก MCP Toolchain Integration: Modular tool ecosystem based on Model Context Protocol
  • ๐Ÿ”Œ Extensible Strategy Framework: Support for third-party strategies and custom AI agent integration
  • โฐ Historical Replay Capability: Time-period replay functionality with automatic future information filtering

๐ŸŽฎ Trading Environment

Each AI model starts with 10,000ใƒ‰ใƒซ to trade NASDAQ 100 stocks in a controlled environment with real market data and historical replay capabilities.

  • ๐Ÿ’ฐ Initial Capital: 10,000ใƒ‰ใƒซ USD starting balance
  • ๐Ÿ“ˆ Trading Universe: NASDAQ 100 component stocks (top 100 technology stocks)
  • โฐ Trading Schedule: Weekday market hours with historical simulation support
  • ๐Ÿ“Š Data Integration: Alpha Vantage API combined with Jina AI market intelligence
  • ๐Ÿ”„ Time Management: Historical period replay with automated future information filtering

๐Ÿง  Agentic Trading Capabilities

AI agents operate with complete autonomy, conducting market research, making trading decisions, and continuously evolving their strategies without human intervention.

  • ๐Ÿ“ฐ Autonomous Market Research: Intelligent retrieval and filtering of market news, analyst reports, and financial data
  • ๐Ÿ’ก Independent Decision Engine: Multi-dimensional analysis driving fully autonomous buy/sell execution
  • ๐Ÿ“ Comprehensive Trade Logging: Automated documentation of trading rationale, execution details, and portfolio changes
  • ๐Ÿ”„ Adaptive Strategy Evolution: Self-optimizing algorithms that adjust based on market performance feedback

๐Ÿ Competition Rules

All AI models compete under identical conditions with the same capital, data access, tools, and evaluation metrics to ensure fair comparison.

  • ๐Ÿ’ฐ Starting Capital: 10,000ใƒ‰ใƒซ USD initial investment
  • ๐Ÿ“Š Data Access: Uniform market data and information feeds
  • โฐ Operating Hours: Synchronized trading time windows
  • ๐Ÿ“ˆ Performance Metrics: Standardized evaluation criteria across all models
  • ๐Ÿ› ๏ธ Tool Access: Identical MCP toolchain for all participants

๐ŸŽฏ Objective: Determine which AI model achieves superior investment returns through pure autonomous operation!

๐Ÿšซ Zero Human Intervention

AI agents operate with complete autonomy, making all trading decisions and strategy adjustments without any human programming, guidance, or intervention.

  • โŒ No Pre-Programming: Zero preset trading strategies or algorithmic rules
  • โŒ No Human Input: Complete reliance on inherent AI reasoning capabilities
  • โŒ No Manual Override: Absolute prohibition of human intervention during trading
  • โœ… Tool-Only Execution: All operations executed exclusively through standardized tool calls
  • โœ… Self-Adaptive Learning: Independent strategy refinement based on market performance feedback

โฐ Historical Replay Architecture

A core innovation of AI-Trader Bench is its fully replayable trading environment, ensuring scientific rigor and reproducibility in AI agent performance evaluation on historical market data.

๐Ÿ”„ Temporal Control Framework

๐Ÿ“… Flexible Time Settings

{
 "date_range": {
 "init_date": "2025ๅนด01ๆœˆ01ๆ—ฅ", // Any start date
 "end_date": "2025ๅนด01ๆœˆ31ๆ—ฅ" // Any end date
 }
}

๐Ÿ›ก๏ธ Anti-Look-Ahead Data Controls

AI can only access market data from current time and before. No future information allowed.

  • ๐Ÿ“Š Price Data Boundaries: Market data access limited to simulation timestamp and historical records
  • ๐Ÿ“ฐ News Chronology Enforcement: Real-time filtering prevents access to future-dated news and announcements
  • ๐Ÿ“ˆ Financial Report Timeline: Information restricted to officially published data as of current simulation date
  • ๐Ÿ” Historical Intelligence Scope: Market analysis constrained to chronologically appropriate data availability

๐ŸŽฏ Replay Advantages

๐Ÿ”ฌ Empirical Research Framework

  • ๐Ÿ“Š Market Efficiency Studies: Evaluate AI performance across diverse market conditions and volatility regimes
  • ๐Ÿง  Decision Consistency Analysis: Examine temporal stability and behavioral patterns in AI trading logic
  • ๐Ÿ“ˆ Risk Management Assessment: Validate effectiveness of AI-driven risk mitigation strategies

๐ŸŽฏ Fair Competition Framework

  • ๐Ÿ† Equal Information Access: All AI models operate with identical historical datasets
  • ๐Ÿ“Š Standardized Evaluation: Performance metrics calculated using uniform data sources
  • ๐Ÿ” Full Reproducibility: Complete experimental transparency with verifiable results

๐Ÿ“ Project Architecture

AI-Trader Bench/
โ”œโ”€โ”€ ๐Ÿค– Core System
โ”‚ โ”œโ”€โ”€ main.py # ๐ŸŽฏ Main program entry
โ”‚ โ”œโ”€โ”€ agent/base_agent/ # ๐Ÿง  AI agent core
โ”‚ โ””โ”€โ”€ configs/ # โš™๏ธ Configuration files
โ”‚
โ”œโ”€โ”€ ๐Ÿ› ๏ธ MCP Toolchain
โ”‚ โ”œโ”€โ”€ agent_tools/
โ”‚ โ”‚ โ”œโ”€โ”€ tool_trade.py # ๐Ÿ’ฐ Trade execution
โ”‚ โ”‚ โ”œโ”€โ”€ tool_get_price_local.py # ๐Ÿ“Š Price queries
โ”‚ โ”‚ โ”œโ”€โ”€ tool_jina_search.py # ๐Ÿ” Information search
โ”‚ โ”‚ โ””โ”€โ”€ tool_math.py # ๐Ÿงฎ Mathematical calculations
โ”‚ โ””โ”€โ”€ tools/ # ๐Ÿ”ง Auxiliary tools
โ”‚
โ”œโ”€โ”€ ๐Ÿ“Š Data System
โ”‚ โ”œโ”€โ”€ data/
โ”‚ โ”‚ โ”œโ”€โ”€ daily_prices_*.json # ๐Ÿ“ˆ Stock price data
โ”‚ โ”‚ โ”œโ”€โ”€ merged.jsonl # ๐Ÿ”„ Unified data format
โ”‚ โ”‚ โ””โ”€โ”€ agent_data/ # ๐Ÿ“ AI trading records
โ”‚ โ””โ”€โ”€ calculate_performance.py # ๐Ÿ“ˆ Performance analysis
โ”‚
โ”œโ”€โ”€ ๐ŸŽจ Frontend Interface
โ”‚ โ””โ”€โ”€ frontend/ # ๐ŸŒ Web dashboard
โ”‚
โ””โ”€โ”€ ๐Ÿ“‹ Configuration & Documentation
 โ”œโ”€โ”€ configs/ # โš™๏ธ System configuration
 โ”œโ”€โ”€ prompts/ # ๐Ÿ’ฌ AI prompts
 โ””โ”€โ”€ calc_perf.sh # ๐Ÿš€ Performance calculation script

๐Ÿ”ง Core Components Details

๐ŸŽฏ Main Program (main.py)

  • Multi-Model Concurrency: Run multiple AI models simultaneously for trading
  • Configuration Management: Support for JSON configuration files and environment variables
  • Date Management: Flexible trading calendar and date range settings
  • Error Handling: Comprehensive exception handling and retry mechanisms

๐Ÿ› ๏ธ MCP Toolchain

Tool Function API
Trading Tool Buy/sell stocks, position management buy(), sell()
Price Tool Real-time and historical price queries get_price_local()
Search Tool Market information search get_information()
Math Tool Financial calculations and analysis Basic mathematical operations

๐Ÿ“Š Data System

  • ๐Ÿ“ˆ Price Data: Complete OHLCV data for NASDAQ 100 component stocks
  • ๐Ÿ“ Trading Records: Detailed trading history for each AI model
  • ๐Ÿ“Š Performance Metrics: Sharpe ratio, maximum drawdown, annualized returns, etc.
  • ๐Ÿ”„ Data Synchronization: Automated data acquisition and update mechanisms

๐Ÿš€ Quick Start

๐Ÿ“‹ Prerequisites

  • Python 3.8+
  • API Keys: OpenAI, Alpha Vantage, Jina AI

โšก One-Click Installation

# 1. Clone project
git clone https://github.com/HKUDS/AI-Trader.git
cd AI-Trader
# 2. Install dependencies
pip install -r requirements.txt
# 3. Configure environment variables
cp .env.example .env
# Edit .env file and fill in your API keys

๐Ÿ”‘ Environment Configuration

Create .env file and configure the following variables:

# ๐Ÿค– AI Model API Configuration
OPENAI_API_BASE=https://your-openai-proxy.com/v1
OPENAI_API_KEY=your_openai_key
# ๐Ÿ“Š Data Source Configuration
ALPHAADVANTAGE_API_KEY=your_alpha_vantage_key
JINA_API_KEY=your_jina_api_key
# โš™๏ธ System Configuration
RUNTIME_ENV_PATH=./runtime_env.json # Recommended to use absolute path
# ๐ŸŒ Service Port Configuration
MATH_HTTP_PORT=8000
SEARCH_HTTP_PORT=8001
TRADE_HTTP_PORT=8002
GETPRICE_HTTP_PORT=8003
# ๐Ÿง  AI Agent Configuration
AGENT_MAX_STEP=30 # Maximum reasoning steps

๐Ÿ“ฆ Dependencies

# Install production dependencies
pip install -r requirements.txt
# Or manually install core dependencies
pip install langchain langchain-openai langchain-mcp-adapters fastmcp python-dotenv requests numpy pandas

๐ŸŽฎ Running Guide

๐Ÿ“Š Step 1: Data Preparation (./fresh_data.sh)

# ๐Ÿ“ˆ Get NASDAQ 100 stock data
cd data
python get_daily_price.py
# ๐Ÿ”„ Merge data into unified format
python merge_jsonl.py

๐Ÿ› ๏ธ Step 2: Start MCP Services

cd ./agent_tools
python start_mcp_services.py

๐Ÿš€ Step 3: Start AI Arena

# ๐ŸŽฏ Run main program - let AIs start trading!
python main.py
# ๐ŸŽฏ Or use custom configuration
python main.py configs/my_config.json

โฐ Time Settings Example

๐Ÿ“… Create Custom Time Configuration

{
 "agent_type": "BaseAgent",
 "date_range": {
 "init_date": "2024ๅนด01ๆœˆ01ๆ—ฅ", // Backtest start date
 "end_date": "2024ๅนด03ๆœˆ31ๆ—ฅ" // Backtest end date
 },
 "models": [
 {
 "name": "claude-3.7-sonnet",
 "basemodel": "anthropic/claude-3.7-sonnet",
 "signature": "claude-3.7-sonnet",
 "enabled": true
 }
 ]
}

๐Ÿ“ˆ Start Web Interface

cd docs
python3 -m http.server 8000
# Visit http://localhost:8000

๐Ÿ“ˆ Performance Analysis

๐Ÿ† Competition Rules

Rule Item Setting Description
๐Ÿ’ฐ Initial Capital 10,000ใƒ‰ใƒซ Starting capital for each AI model
๐Ÿ“ˆ Trading Targets NASDAQ 100 100 top tech stocks
โฐ Trading Hours Weekdays Monday to Friday
๐Ÿ’ฒ Price Benchmark Opening Price Trade using daily opening price
๐Ÿ“ Recording Method JSONL Format Complete trading history records

โš™๏ธ Configuration Guide

๐Ÿ“‹ Configuration File Structure

{
 "agent_type": "BaseAgent",
 "date_range": {
 "init_date": "2025ๅนด01ๆœˆ01ๆ—ฅ",
 "end_date": "2025ๅนด01ๆœˆ31ๆ—ฅ"
 },
 "models": [
 {
 "name": "claude-3.7-sonnet",
 "basemodel": "anthropic/claude-3.7-sonnet",
 "signature": "claude-3.7-sonnet",
 "enabled": true
 }
 ],
 "agent_config": {
 "max_steps": 30,
 "max_retries": 3,
 "base_delay": 1.0,
 "initial_cash": 10000.0
 },
 "log_config": {
 "log_path": "./data/agent_data"
 }
}

๐Ÿ”ง Configuration Parameters

Parameter Description Default Value
agent_type AI agent type "BaseAgent"
max_steps Maximum reasoning steps 30
max_retries Maximum retry attempts 3
base_delay Operation delay (seconds) 1.0
initial_cash Initial capital 10,000ใƒ‰ใƒซ

๐Ÿ“Š Data Format

๐Ÿ’ฐ Position Records (position.jsonl)

{
 "date": "2025ๅนด01ๆœˆ20ๆ—ฅ",
 "id": 1,
 "this_action": {
 "action": "buy",
 "symbol": "AAPL", 
 "amount": 10
 },
 "positions": {
 "AAPL": 10,
 "MSFT": 0,
 "CASH": 9737.6
 }
}

๐Ÿ“ˆ Price Data (merged.jsonl)

{
 "Meta Data": {
 "2. Symbol": "AAPL",
 "3. Last Refreshed": "2025ๅนด01ๆœˆ20ๆ—ฅ"
 },
 "Time Series (Daily)": {
 "2025-01-20": {
 "1. buy price": "255.8850",
 "2. high": "264.3750", 
 "3. low": "255.6300",
 "4. sell price": "262.2400",
 "5. volume": "90483029"
 }
 }
}

๐Ÿ“ File Structure

data/agent_data/
โ”œโ”€โ”€ claude-3.7-sonnet/
โ”‚ โ”œโ”€โ”€ position/
โ”‚ โ”‚ โ””โ”€โ”€ position.jsonl # ๐Ÿ“ Position records
โ”‚ โ””โ”€โ”€ log/
โ”‚ โ””โ”€โ”€ 2025ๅนด01ๆœˆ20ๆ—ฅ/
โ”‚ โ””โ”€โ”€ log.jsonl # ๐Ÿ“Š Trading logs
โ”œโ”€โ”€ gpt-4o/
โ”‚ โ””โ”€โ”€ ...
โ””โ”€โ”€ qwen3-max/
 โ””โ”€โ”€ ...

๐Ÿ”Œ Third-Party Strategy Integration

AI-Trader Bench adopts a modular design, supporting easy integration of third-party strategies and custom AI agents.

๐Ÿ› ๏ธ Integration Methods

1. Custom AI Agent

# Create new AI agent class
class CustomAgent(BaseAgent):
 def __init__(self, model_name, **kwargs):
 super().__init__(model_name, **kwargs)
 # Add custom logic

2. Register New Agent

# Register in main.py
AGENT_REGISTRY = {
 "BaseAgent": {
 "module": "agent.base_agent.base_agent",
 "class": "BaseAgent"
 },
 "CustomAgent": { # New addition
 "module": "agent.custom.custom_agent",
 "class": "CustomAgent"
 },
}

3. Configuration File Settings

{
 "agent_type": "CustomAgent",
 "models": [
 {
 "name": "your-custom-model",
 "basemodel": "your/model/path",
 "signature": "custom-signature",
 "enabled": true
 }
 ]
}

๐Ÿ”ง Extending Toolchain

Adding Custom Tools

# Create new MCP tool
@mcp.tools()
class CustomTool:
 def __init__(self):
 self.name = "custom_tool"
 
 def execute(self, params):
 # Implement custom tool logic
 return result

๐Ÿš€ Roadmap

๐ŸŒŸ Future Plans

  • ๐Ÿ‡จ๐Ÿ‡ณ A-Share Support - Extend to Chinese stock market
  • ๐Ÿ“Š Post-Market Statistics - Automatic profit analysis
  • ๐Ÿ”Œ Strategy Marketplace - Add third-party strategy sharing platform
  • ๐ŸŽจ Cool Frontend Interface - Modern web dashboard
  • โ‚ฟ Cryptocurrency - Support digital currency trading
  • ๐Ÿ“ˆ More Strategies - Technical analysis, quantitative strategies
  • โฐ Advanced Replay - Support minute-level time precision and real-time replay
  • ๐Ÿ” Smart Filtering - More precise future information detection and filtering

๐Ÿค Contributing Guide

We welcome contributions of all kinds! Especially AI trading strategies and agent implementations.

๐Ÿง  AI Strategy Contributions

  • ๐ŸŽฏ Trading Strategies: Contribute your AI trading strategy implementations
  • ๐Ÿค– Custom Agents: Implement new AI agent types
  • ๐Ÿ“Š Analysis Tools: Add new market analysis tools
  • ๐Ÿ” Data Sources: Integrate new data sources and APIs

๐Ÿ› Issue Reporting

  • Use GitHub Issues to report bugs
  • Provide detailed reproduction steps
  • Include system environment information

๐Ÿ’ก Feature Suggestions

  • Propose new feature ideas in Issues
  • Describe use cases in detail
  • Discuss implementation approaches

๐Ÿ”ง Code Contributions

  1. Fork the project
  2. Create a feature branch
  3. Implement your strategy or feature
  4. Add test cases
  5. Create a Pull Request

๐Ÿ“š Documentation Improvements

  • Improve README documentation
  • Add code comments
  • Write usage tutorials
  • Contribute strategy documentation

๐Ÿ† Strategy Sharing

  • ๐Ÿ“ˆ Technical Analysis Strategies: AI strategies based on technical indicators
  • ๐Ÿ“Š Quantitative Strategies: Multi-factor models and quantitative analysis
  • ๐Ÿ” Fundamental Strategies: Analysis strategies based on financial data
  • ๐ŸŒ Macro Strategies: Strategies based on macroeconomic data

๐Ÿ“ž Support & Community

๐Ÿ“„ License

This project is licensed under the MIT License.

๐Ÿ™ Acknowledgments

Thanks to the following open source projects and services:

Disclaimer

The materials provided by the AI-Trader project are for research purposes only and do not constitute any investment advice. Investors should seek independent professional advice before making any investment decisions. Past performance, if any, should not be taken as an indicator of future results. You should note that the value of investments may go up as well as down, and there is no guarantee of returns. All content of the AI-Trader project is provided solely for research purposes and does not constitute a recommendation to invest in any of the mentioned securities or sectors. Investing involves risks. Please seek professional advice if needed.


๐ŸŒŸ If this project helps you, please give us a Star!

GitHub stars GitHub forks

๐Ÿค– Experience AI's full potential in financial markets through complete autonomous decision-making!
๐Ÿ› ๏ธ Pure tool-driven execution with zero human interventionโ€”a genuine AI trading arena! ๐Ÿš€


โญ Star History

Community Growth Trajectory


โค๏ธ Thanks for visiting โœจ AI-Trader!

Views

About

"AI-Trader: Can AI Beat the Market?" Live Trading: https://hkuds.github.io/AI-Trader/

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • Shell 0.5%

AltStyle ใซใ‚ˆใฃใฆๅค‰ๆ›ใ•ใ‚ŒใŸใƒšใƒผใ‚ธ (->ใ‚ชใƒชใ‚ธใƒŠใƒซ) /