2

I have a dataframe with a column called geo_shape, for each row in this column data is in the format str with the following structure:

{"type":"MultiPolygon","coordinates":[[[[-99.1634043186724,19.3929362021363],[-99.1633935829153,19.3929814150842],[-99.1633779741792,19.3930471892216],[-99.1633676666966,19.3930905871479],[-99.1633539424123,19.3931484149288],[-99.1633536713463,19.393149556657],[-99.1633326516698,19.3932380913299],[-99.1633273408772,19.3932604765675],[-99.1633258846922,19.3932665988711],[-99.1632503982955,19.393250045508],[-99.1631580388255,19.3932297985256],[-99.1631022520036,19.3932175708424],[-99.1630096356198,19.3931972605697],[-99.1629243185542,19.3931785487074],[-99.1628253831388,19.3931568656532],[-99.1627721849032,19.3931451977826],[-99.1626860494573,19.3931263142213],[-99.1626865729325,19.3931240386763],[-99.162711364006,19.393124012126],[-99.1627524427473,19.3929332906781],[-99.1627565829766,19.3929140659265],[-99.1627814909565,19.3927984103957],[-99.1627980880081,19.3928020859532],[-99.1628764196311,19.3928194161424],[-99.1629163896067,19.3928282573258],[-99.1629931414886,19.3928452352628],[-99.1630458733238,19.3928569030601],[-99.1631201794492,19.3928733390959],[-99.1631648506849,19.3928832187645],[-99.1632414789013,19.3929001785344],[-99.1632705142618,19.3929065993979],[-99.1633527478204,19.3929247873036],[-99.1633697636313,19.3929285531163],[-99.1634043186724,19.3929362021363]]]]}

I want to convert each one of these rows to a MultiPolygon in a GeoDataframe. I have tried passing each str to a dict, then to a tuple and from there try to create the GeoDataframe, but my guess is that there is a quicker way of doing this.

asked Nov 2, 2020 at 23:17

2 Answers 2

2

Firstly, you have to create a shapely geometry by using shape function1

Secondly, you must use the geopandas library, specifying your dataframe and geometry column.

import pandas as pd
import geopandas as gpd
from shapely.geometry import shape
# First step
df['geo_shape'] = shape({"type":"MultiPolygon","coordinates":[[[[-99.1634043186724,19.3929362021363],[-99.1633935829153,19.3929814150842],[-99.1633779741792,19.3930471892216],[-99.1633676666966,19.3930905871479],[-99.1633539424123,19.3931484149288],[-99.1633536713463,19.393149556657],[-99.1633326516698,19.3932380913299],[-99.1633273408772,19.3932604765675],[-99.1633258846922,19.3932665988711],[-99.1632503982955,19.393250045508],[-99.1631580388255,19.3932297985256],[-99.1631022520036,19.3932175708424],[-99.1630096356198,19.3931972605697],[-99.1629243185542,19.3931785487074],[-99.1628253831388,19.3931568656532],[-99.1627721849032,19.3931451977826],[-99.1626860494573,19.3931263142213],[-99.1626865729325,19.3931240386763],[-99.162711364006,19.393124012126],[-99.1627524427473,19.3929332906781],[-99.1627565829766,19.3929140659265],[-99.1627814909565,19.3927984103957],[-99.1627980880081,19.3928020859532],[-99.1628764196311,19.3928194161424],[-99.1629163896067,19.3928282573258],[-99.1629931414886,19.3928452352628],[-99.1630458733238,19.3928569030601],[-99.1631201794492,19.3928733390959],[-99.1631648506849,19.3928832187645],[-99.1632414789013,19.3929001785344],[-99.1632705142618,19.3929065993979],[-99.1633527478204,19.3929247873036],[-99.1633697636313,19.3929285531163],[-99.1634043186724,19.3929362021363]]]]})
print(type(df)) # <class 'pandas.core.frame.DataFrame'>
# Second step
gdf = gpd.GeoDataFrame(df, geometry='geo_shape')
print(type(gdf)) # <class 'geopandas.geodataframe.GeoDataFrame'>
answered Nov 3, 2020 at 9:34
1

To create a shapely geometry, you can use shape function

from shapely.geometry import shape
shape({"type":"MultiPolygon","coordinates":[[[[-99.1634043186724,19.3929362021363],[-99.1633935829153,19.3929814150842],[-99.1633779741792,19.3930471892216],[-99.1633676666966,19.3930905871479],[-99.1633539424123,19.3931484149288],[-99.1633536713463,19.393149556657],[-99.1633326516698,19.3932380913299],[-99.1633273408772,19.3932604765675],[-99.1633258846922,19.3932665988711],[-99.1632503982955,19.393250045508],[-99.1631580388255,19.3932297985256],[-99.1631022520036,19.3932175708424],[-99.1630096356198,19.3931972605697],[-99.1629243185542,19.3931785487074],[-99.1628253831388,19.3931568656532],[-99.1627721849032,19.3931451977826],[-99.1626860494573,19.3931263142213],[-99.1626865729325,19.3931240386763],[-99.162711364006,19.393124012126],[-99.1627524427473,19.3929332906781],[-99.1627565829766,19.3929140659265],[-99.1627814909565,19.3927984103957],[-99.1627980880081,19.3928020859532],[-99.1628764196311,19.3928194161424],[-99.1629163896067,19.3928282573258],[-99.1629931414886,19.3928452352628],[-99.1630458733238,19.3928569030601],[-99.1631201794492,19.3928733390959],[-99.1631648506849,19.3928832187645],[-99.1632414789013,19.3929001785344],[-99.1632705142618,19.3929065993979],[-99.1633527478204,19.3929247873036],[-99.1633697636313,19.3929285531163],[-99.1634043186724,19.3929362021363]]]]})

For the whole DataFrame, you pass it to apply.

geometry = df['your_column'].apply(shape)
Taras
35.8k5 gold badges77 silver badges151 bronze badges
answered Nov 3, 2020 at 8:47

Your Answer

Draft saved
Draft discarded

Sign up or log in

Sign up using Google
Sign up using Email and Password

Post as a guest

Required, but never shown

Post as a guest

Required, but never shown

By clicking "Post Your Answer", you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.